|   | 
Details
   web
Records
Author Herrero-Garcia, J.; Schwetz, T.; Zupan, J.
Title On the annual modulation signal in dark matter direct detection Type Journal Article
Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 005 - 28pp
Keywords dark matter theory; dark matter experiments; dark matter detectors
Abstract We derive constraints on the annual modulation signal in Dark Matter (DM) direct detection experiments in terms of the unmodulated event rate. A general bound independent of the details of the DM distribution follows from the assumption that the motion of the earth around the sun is the only source of time variation. The bound is valid for a very general class of particle physics models and also holds in the presence of an unknown unmodulated background. More stringent bounds are obtained, if modest assumptions on symmetry properties of the DM halo are adopted. We illustrate the bounds by applying them to the annual modulation signals reported by the DAMA and CoGeNT experiments in the framework of spin-independent elastic scattering. While the DAMA signal satisfies our bounds, severe restrictions on the DM mass can be set for CoGeNT.
Address [Herrero-Garcia, Juan; Schwetz, Thomas] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany, Email: juan.a.herrero@uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000302949600005 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 1000
Permanent link to this record
 

 
Author Herrero-Garcia, J.; Schwetz, T.; Zupan, J.
Title Astrophysics independent bounds on the annual modulation of dark matter signals Type Journal Article
Year 2012 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 109 Issue 14 Pages 141301 - 5pp
Keywords
Abstract We show how constraints on the time integrated event rate from a given dark matter (DM) direct detection experiment can be used to bound the amplitude of the annual modulation signal in another experiment. The method requires only mild assumptions about the properties of the local DM distribution: that it is temporally stable on the scale of months and spatially homogeneous on the ecliptic. We apply the method to the annual modulation signal in DAMA/LIBRA, which we compare to the bounds derived from XENON10, XENON100, cryogenic DM search, and SIMPLE data. Assuming a DM mass of 10 GeV, we show that under the above assumptions about the DM halo, a DM interpretation of the DAMA/LIBRA signal is excluded for several classes of models: at 6.3 sigma (4.6 sigma) for elastic isospin conserving (violating) spin-independent interactions, and at 4.9 sigma for elastic spin-dependent interactions on protons.
Address [Herrero-Garcia, Juan] Univ Valencia, CSIC, Dept Fis Teor, E-46071 Valencia, Spain, Email: juan.a.herrero@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000309455600003 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 1179
Permanent link to this record
 

 
Author Bozorgnia, N.; Herrero-Garcia, J.; Schwetz, T.; Zupan, J.
Title Halo-independent methods for inelastic dark matter scattering Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 049 - 15pp
Keywords dark matter theory; dark matter experiments
Abstract We present halo-independent methods to analyze the results of dark matter direct detection experiments assuming inelastic scattering. We focus on the annual modulation signal reported by DAMA/LIBRA and present three different halo-independent tests. First, we compare it to the upper limit on the unmodulated rate from XENON100 using (a) the trivial requirement that the amplitude of the annual modulation has to be smaller than the bound on the unmodulated rate, and (b) a bound on the annual modulation amplitude based on an expansion in the Earth's velocity. The third test uses the special predictions of the signal shape for inelastic scattering and allows for an internal consistency check of the data without referring to any astrophysics. We conclude that a strong conflict between DAMA/LIBRA and XENON100 in the framework of spin-independent inelastic scattering can be established independently of the local properties of the dark matter halo.
Address [Bozorgnia, Nassim; Schwetz, Thomas] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany, Email: bozorgnia@mpi-hd.mpg.de;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000322582000050 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 1530
Permanent link to this record
 

 
Author Herrero-Garcia, J.; Nebot, M.; Rius, N.; Santamaria, A.
Title The Zee-Babu model revisited in the light of new data Type Journal Article
Year 2014 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 885 Issue Pages 542-570
Keywords
Abstract We update previous analyses of the Zee-Babu model in the light of new data, e.g., the mixing angle On, the rare decay μ-> e gamma and the LHC results. We also analyze the possibility of accommodating the deviations in Gamma (H -> gamma gamma) hinted by the LHC experiments, and the stability of the scalar potential. We find that neutrino oscillation data and low energy constraints are still compatible with masses of the extra charged scalars accessible to LHC. Moreover, if any of them is discovered, the model can be falsified by combining the information on the singly and doubly charged scalar decay modes with neutrino data. Conversely, if the neutrino spectrum is found to be inverted and the CP phase delta is quite different from pi, the masses of the charged scalars will be well outside the LHC reach.
Address [Herrero-Garcia, Juan; Rius, Nuria; Santamaria, Arcadi] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000339598300025 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 1858
Permanent link to this record
 

 
Author de Gouvea, A.; Herrero-Garcia, J.; Kobach, A.
Title Neutrino masses, grand unification, and baryon number violation Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue 1 Pages 016011 - 11pp
Keywords
Abstract If grand unification is real, searches for baryon-number violation should be included on the list of observables that may reveal information regarding the origin of neutrino masses. Making use of an effective-operator approach and assuming that nature is SU(5) invariant at very short distances, we estimate the consequences of different scenarios that lead to light Majorana neutrinos for low-energy phenomena that violate baryon number minus lepton number (B – L) by two (or more) units, including neutron-antineutron oscillations and B – L violating nucleon decays. We find that, among all possible effective theories of lepton-number violation that lead to nonzero neutrino masses, only a subset is, broadly speaking, consistent with grand unification.
Address [de Gouvea, Andre; Herrero-Garcia, Juan; Kobach, Andrew] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000339482900016 Approved no
Is ISI yes International Collaboration (down) yes
Call Number IFIC @ pastor @ Serial 1860
Permanent link to this record