toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Alvarez-Castillo, D.E.; Blaschke, D.B.; Grunfeld, A.G.; Pagura, V.P. url  doi
openurl 
  Title Third family of compact stars within a nonlocal chiral quark model equation of state Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 6 Pages (down) 063010 - 19pp  
  Keywords  
  Abstract A class of hybrid compact star equations of state is investigated that joins by a Maxwell construction a low-density phase of hadronic matter, modeled by a relativistic mean-field approach with excluded nucleon volume, with a high-density phase of color superconducting two-flavor quark matter, described within a nonlocal covariant chiral quark model. It is found that the occurrence of a stable branch of hybrid compact stars requires a nonvanishing vector meson coupling in the quark model that exceeds a minimal value which depends on the presence of a diquark condensate. It is shown that these hybrid stars do not form a third family disconnected from the second family of ordinary neutron stars unless additional (de) confining effects are introduced with a density-dependent bag pressure. A suitably chosen density dependence of the vector meson coupling assures that at the same time the 2M(circle dot) maximum mass constraint is fulfilled on the hybrid star branch. A twofold interpolation method is realized which implements both the density dependence of a confining bag pressure at the onset of the hadron-to-quark matter transition and the stiffening of quark matter at higher densities by a density-dependent vector meson coupling. For three parametrizations of this class of hybrid equation of state the properties of corresponding compact star sequences are presented, including mass twins of neutron and hybrid stars at 2.00, 1.39 and 1.20 M-circle dot, respectively, and the hybrid compact star (third) families. The sensitivity of the hybrid equation of state and the corresponding compact star sequences to variations of the interpolation parameters at the 10% level is investigated and it is found that the feature of third family solutions for compact stars is robust against such a variation. This advanced description of hybrid star matter allows us to interpret GW170817 as a merger not only of two neutron stars but also of a neutron star with a hybrid star or of two hybrid stars.  
  Address [Alvarez-Castillo, D. E.; Blaschke, D. B.] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Joliot Curie St 6, Dubna 141980, Russia, Email: alvarez@theor.jinr.ru;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000461909600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3947  
Permanent link to this record
 

 
Author Timar, J. et al; Algora, A. url  doi
openurl 
  Title Experimental Evidence for Transverse Wobbling in Pd-105 Type Journal Article
  Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 122 Issue 6 Pages (down) 062501 - 6pp  
  Keywords  
  Abstract New rotational bands built on the nu(h(11/2)) configuration have been identified in Pd-105. Two bands built on this configuration show the characteristics of transverse wobbling: the Delta I = 1 transitions between them have a predominant E2 component and the wobbling energy decreases with increasing spin. The properties of the observed wobbling bands are in good agreement with theoretical results obtained using constrained triaxial covariant density functional theory and quantum particle rotor model calculations. This provides the first experimental evidence for transverse wobbling bands based on a one-neutron configuration, and also represents the first observation of wobbling motion in the A similar to 100 mass region.  
  Address [Timar, J.; Kruzsicz, B.; Sohler, D.; Kuti, I.; Algora, A.; Dombradi, Zs.; Krasznahorkay, A.; Molnar, J.; Nyako, B. M.; Zolnai, L.] Hungarian Acad Sci, Inst Nucl Res, Pf 51, H-4001 Debrecen, Hungary, Email: timar@atomki.hu  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000458381300006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3909  
Permanent link to this record
 

 
Author Anderson, P.R.; Clark, R.D.; Fabbri, A.; Good, M.R.R. url  doi
openurl 
  Title Late time approach to Hawking radiation: Terms beyond leading order Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 6 Pages (down) 061703 - 5pp  
  Keywords  
  Abstract Black hole evaporation is studied using wave packets for the modes. These allow for approximate frequency and time resolution. The leading order late time behavior gives the well-known Hawking radiation that is independent of how the black hole formed. The focus here is on the higher order terms and the rate at which they damp at late times. Some of these terms carry information about how the black hole formed. A general argument is given which shows that the damping is significantly slower (power law) than what might be naively expected from a stationary phase approximation (exponential). This result is verified by numerical calculations in the cases of 2D and 4D black holes that form from the collapse of a null shell.  
  Address [Anderson, Paul R.; Clark, Raymond D.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: anderson@wfu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000487736400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4151  
Permanent link to this record
 

 
Author Tang, C.; Gao, F.; Liu, Y.X. url  doi
openurl 
  Title Practical scheme from QCD to phenomena via Dyson-Schwinger equations Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 5 Pages (down) 056001 - 16pp  
  Keywords  
  Abstract We deliver a scheme to compute the quark propagator and the quark-gluon interaction vertex through the coupled Dyson-Schwinger equations (DSEs) of QCD. We take the three-gluon vertex into account in our calculations, and implement the gluon propagator and the running coupling function fitted by the solutions of their respective DSEs. We obtain the momentum and current mass dependence of the quark propagator and the quark-gluon vertex, and the chiral quark condensate that agrees with previous results excellently. We also compute the quark-photon vertex within this scheme and give the anomalous chromo- and electromagnetic moment of the quark. The obtained results are excellently consistent with previous ones. These applications manifest that the scheme is realistic and then practical for explaining the QCD-related phenomena.  
  Address [Tang, Can; Liu, Yu-xin] Peking Univ, Dept Phys, Beijing 100871, Peoples R China, Email: yxliu@pku.edu.cn  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000483583000008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4128  
Permanent link to this record
 

 
Author Dong, P.V.; Huong, D.T.; Camargo, D.A.; Queiroz, F.S.; Valle, J.W.F. url  doi
openurl 
  Title Asymmetric dark matter, inflation, and leptogenesis from B-L symmetry breaking Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 5 Pages (down) 055040 - 17pp  
  Keywords  
  Abstract We propose a unified setup for dark matter, inflation, and baryon asymmetry generation through the neutrino mass seesaw mechanism. Our scenario emerges naturally from an extended gauge group containing B-L as a noncommutative symmetry, broken by a singlet scalar that also drives inflation. Its decays reheat the universe, producing the lightest right-handed neutrino. Automatic matter parity conservation leads to the stability of an asymmetric dark matter candidate, directly linked to the matter-antimatter asymmetry in the Universe.  
  Address [Phung Van Dong] Phenikaa Univ, Phenikaa Inst Adv Study, Hanoi 100000, Vietnam, Email: dong.phungvan@phenikaa-uni.edu.vn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000462913900007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3969  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva