Ikeno, N., Dias, J. M., Liang, W. H., & Oset, E. (2024). D+ → Ks0 π+ η reaction and a0(980)+. Eur. Phys. J. C, 84(5), 469–9pp.
Abstract: We study the D+ -> K- 0 pi (+) eta reaction where the a(0)(980) excitation plays a dominant role. We consider mechanisms of external and internal emission at the quark level, hadronize the qq components into two mesons and allow these mesons to undergo final state interaction where the a(0)(980) state is generated. While the a(0)(980) production is the dominant term, we also find other terms in the reaction that interfere with this production mode and, through interference with it, lead to a shape of the a(0)(980) significantly different from the one observed in other experiments, with an apparently much larger width.
|
Liang, W. H., Molina, R., & Oset, E. (2010). Radiative open charm decay of the Y(3940), Z(3930), X(4160) resonances. Eur. Phys. J. A, 44(3), 479–486.
Abstract: We determine the radiative decay amplitudes for the decay into D* and (D) over bar gamma, or (D) over bar gamma(s)* and s. of some of the charmonium- like states classified as X, Y, Z resonances, plus some other hidden charm states which are dynamically generated from the interaction of vector mesons with charm. The mass distributions as a function of the (D) over bar gamma or (D) over bar (s)gamma. invariant mass show a peculiar behavior as a consequence of the D* (D) over bar gamma* nature of these states. The experimental search of these magnitudes can shed light on the nature of these states.
|
Dote, A., Bayar, M., Xiao, C. W., Hyodo, T., Oka, M., & Oset, E. (2013). A narrow quasi-bound state of the DNN system. Nucl. Phys. A, 914, 499–504.
Abstract: We have investigated a charmed system of DNN (composed of two nucleons and a D meson) by a complementary study with a variational calculation and a Faddeev calculation with fixed-center approximation (Faddeev-FCA). In the present study, we employ a DN potential based on a vector-meson exchange picture in which a resonant A(c)(2595) is dynamically generated as a DN quasi-bound state, similarly to the A(1405) as a (K) over barN one in the strange sector. As a result of the study of variational calculation with an effective DN potential and three kinds of NN potentials, the DNN(J(pi) =0(-), I = 1/2) is found to be a narrow quasi-bound state below A(c)(2595)N threshold: total binding energy similar to 225 MeV and mesonic decay width similar to 25 MeV. On the other hand, the J(pi) =1(-) state is considered to be a scattering state of A(c)(2595) and a nucleon. These results are essentially supported by the Faddeev-FCA calculation. By the analysis of the variational wave function, we have found a unique structure in the DNN(J(pi) = 0, I = 1/2) such that the D meson stays around the center of the total system due to the heaviness of the D meson.
|
Dai, L. R., Toledo, G., & Oset, E. (2020). Searching for a D(D)over-bar bound state with the psi(3770) -> gamma D-0(D)over-bar(0) decay. Eur. Phys. J. C, 80(6), 510–8pp.
Abstract: We perform a calculation of the mass distribution in the psi(3770) -> gamma D (D) over bar decay, studying both the D+D- and D-0(D) over bar (0) decays. The electromagnetic interaction is such that the tree level amplitude is null for the neutral channel, which forces the psi(3770) -> gamma D-0(D) over bar (0) transition to go through a loop involving the D+D- -> D-0(D) over bar (0) scattering amplitude. We take the results for this amplitude from a theoretical model that predicts a D (D) over bar bound state and find a D-0(D) over bar (0) mass distribution in the decay drastically different than phase space. The rates obtained are relatively large and the experiment is easily feasible in the present BESIII facility. The performance of this experiment could provide an answer to the issue of this much searched for state, which is the analogue of the f(0)(980) resonance.
|
Song, J., Liang, W. H., & Oset, E. (2025). Determination of the K+K0 scattering length and effective range from the D+→K0π+η reaction. Eur. Phys. J. C, 85(5), 513–9pp.
Abstract: We study the scattering parameters of the K+K0 system through the analysis of the D+-> K0 pi+eta reaction, aiming at determining the scattering length a and effective range r0 of the K+K0 interaction. These parameters are extracted by analyzing and fitting the mass distributions of the pairs in the final K0 pi+eta state. To ensure the reliability of the results, we apply resampling techniques to evaluate statistical uncertainties and improve the precision of the scattering parameters. The obtained results are compared with previous theoretical predictions and experimental data, providing new insights into the K+K0 interaction at low energies.
|