toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Davesne, D.; Pastore, A.; Navarro, J. url  doi
openurl 
  Title Linear response theory in asymmetric nuclear matter for Skyrme functionals including spin-orbit and tensor terms. II. Charge exchange Type Journal Article
  Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 100 Issue 6 Pages (down) 064301 - 10pp  
  Keywords  
  Abstract We present the formalism of linear response theory both at zero and finite temperature in the case of asymmetric nuclear matter excited by an isospin flip probe. The particle-hole interaction is derived from a general Skyrme functional that includes spin-orbit and tensor terms. Response functions are obtained by solving a closed algebraic system of equations. Spin strength functions are analyzed for typical values of density, momentum transfer, asymmetry, and temperature. We evaluate the role of statistical errors related to the uncertainties of the coupling constants of the Skyrme functional and thus determine the confidence interval of the resulting response function.  
  Address [Davesne, D.] Univ Lyon, F-69003 Lyon, France, Email: davesne@ipnl.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000499977600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4214  
Permanent link to this record
 

 
Author Wang, Y.F.; Yao, D.L.; Zheng, H.Q. url  doi
openurl 
  Title New insights on low energy pi N scattering amplitudes: comprehensive analyses at O (p(3)) level Type Journal Article
  Year 2019 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 43 Issue 6 Pages (down) 064110 - 22pp  
  Keywords dispersion relations; pion-nucleon scattering; chiral perturbation theory  
  Abstract A production representation of partial-wave S matrix is utilized to construct low-energy elastic pion-nucleon scattering amplitudes from cuts and poles on complex Riemann sheets. Among them, the contribution of left-hand cuts is estimated using the O (p(3)) results obtained in covariant baryon chiral perturbation theory within the extendedon-nass-shell scheme. By fitting to data on partial-wave phase shifts, it is indicated that the existences of hidden poles in S-11 and P-11 channels, as conjectured in our previous paper [Eur. Phys. J. C, 78(7): 543 (2018)], are firmly established. Specifically, the pole mass of the S-11 hidden resonance is determined to be (895 +/- 81)-(164 +/- 23)i MeV, whereas, the virtual pole in the P-11 channel locates at (966 +/- 18) MeV. It is found that analyses at the O (p(3)) level improves significantly the fit quality, comparing with the previous O (p(2)) one. Quantitative studies with cautious physical discussions are also conducted for the other S- and P-wave channels.  
  Address [Wang, Yu-Fei; Zheng, Han-Qing] Peking Univ, Dept Phys, Beijing 100871, Peoples R China, Email: yaodeliang@pku.edu.cn  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000468501700013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4020  
Permanent link to this record
 

 
Author Nascimento, J.R.; Olmo, G.J.; Porfirio, P.J.; Petrov, A.Y.; Soares, A.R. url  doi
openurl 
  Title Global monopole in Palatini f(R) gravity Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 6 Pages (down) 064053 - 11pp  
  Keywords  
  Abstract We consider the space-time metric generated by a global monopole in an extension of general relativity (GR) of the form f(R) = R – lambda R-2. The theory is formulated in the metric-affine (or Palatini) formalism, and exact analytical solutions are obtained. For lambda < 0, one finds that the solution has the same characteristics as the Schwarzschild black hole with a monopole charge in Einstein's GR. For lambda > 0, instead, the metric is more closely related to the Reissner-Nordstrom metric with a monopole charge and, in addition, it possesses a wormhole-like structure that allows for the geodesic completeness of the spacetime. Our solution recovers the expected limits when lambda = 0 and also at the asymptotic far limit. The angular deflection of light in this space-time in the weak field regime is also calculated.  
  Address [Nascimento, J. R.; Petrov, A. Yu; Soares, A. R.] Univ Fed Paraiba, Dept Fis, Caixa Postal 5008, BR-58051970 Joao Pessoa, Paraiba, Brazil, Email: jroberto@fisica.ufpb.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000462920100010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3966  
Permanent link to this record
 

 
Author Caputo, A.; Reig, M. url  doi
openurl 
  Title Cosmic implications of a low-scale solution to the axion domain wall problem Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 6 Pages (down) 063530 - 10pp  
  Keywords  
  Abstract The post-inflationary breaking of Peccei-Quinn (PQ) symmetry can lead to the cosmic domain wall catastrophe. In this paper we show how to avoid domain walls by implementing the instanton interference effect with a new interaction which itself breaks PQ symmetry and confines at an energy scale smaller than Lambda(QCD). We give a general description of the mechanism and consider its cosmological implications and constraints within a minimal model. Contrary to other mechanisms, we do not require an inverse phase transition or fine-tuned bias terms. Incidentally, the mechanism leads to the introduction of new self-interacting dark matter candidates and the possibility of producing gravitational waves in the frequency range of SKA. Unless a fine-tuned hidden sector is introduced, the mechanism predicts a QCD axion in the mass range 1-15 meV.  
  Address [Caputo, Andrea; Reig, Mario] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: andrea.caputo@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000487735200009 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4152  
Permanent link to this record
 

 
Author Caputo, A.; Sberna, L.; Frias, M.; Blas, D.; Pani, P.; Shao, L.J.; Yan, W.M. url  doi
openurl 
  Title Constraints on millicharged dark matter and axionlike particles from timing of radio waves Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 6 Pages (down) 063515 - 7pp  
  Keywords  
  Abstract We derive constraints on millicharged dark matter and axionlike particles using pulsar timing and fast radio burst observations. For dark matter particles of charge epsilon e, the constraint from time of arrival (TOA) of waves is epsilon/m(milli) less than or similar to 10(-8) eV(-1), for masses m(milli) greater than or similar to 10(-6) eV. For axionlike particles, the polarization of the signals from pulsars yields a bound in the axial coupling g/ m(a) less than or similar to 10(-13) Gev(-1)/(10(-22) eV),for m(a) less than or similar to 10(-19) eV. Both bounds scale as (rho/rho(dm))(1/2 )for fractions of the total dark matter energy density rho(dm). We make a precise study of these bounds using TOA from several pulsars, FRB 121102, and polarization measurements of PSR J0437 – 4715. Our results rule out a new region of the parameter space for these dark matter models.  
  Address [Caputo, Andrea] Univ Valencia, Inst Fis Corpuscular, Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: lsberna@perimeterinstitute.ca  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000486646600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4147  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva