|   | 
Details
   web
Records
Author Lavoura, L.; Morisi, S.; Valle, J.W.F.
Title Accidental stability of dark matter Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages (up) 118 - 17pp
Keywords Beyond Standard Model; Neutrino Physics; Discrete and Finite Symmetries
Abstract We propose that dark matter is stable as a consequence of an accidental Z(2) that results from a flavour symmetry group which is the double-cover group of the symmetry group of one of the regular geometric solids. Although model-dependent, the phenomenology resembles that of a generic “inert Higgs” dark matter scheme.
Address [Lavoura, L.] Univ Tecn Lisboa, CFTP, Inst Super Tecn, P-1049001 Lisbon, Portugal, Email: balio@cftp.ist.utl.pt;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000316273700041 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1383
Permanent link to this record
 

 
Author Carcamo Hernandez, A.E.; Kovalenko, S.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Predictive Pati-Salam theory of fermion masses and mixing Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages (up) 118 - 25pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We propose a Pati-Salam extension of the standard model incorporating a flavor symmetry based on the Delta (27) group. The theory realizes a realistic Froggatt-Nielsen picture of quark mixing and a predictive pattern of neutrino oscillations. We find that, for normal neutrino mass ordering, the atmospheric angle must lie in the higher octant, CP must be violated in oscillations, and there is a lower bound for the 0 nu beta beta decay rate. For the case of inverted mass ordering, we find that the lower atmospheric octant is preferred, and that CP can be conserved in oscillations. Neutrino masses arise from a low-scale seesaw mechanism, whose messengers can be produced by a Z' portal at the LHC.
Address [Carcamo Hernandez, A. E.; Kovalenko, Sergey] Univ Tecn Federico Santa Maria, Casilla 110-V, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000406883100006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3237
Permanent link to this record
 

 
Author Escudero, M.; Lopez-Pavon, J.; Rius, N.; Sandner, S.
Title Relaxing cosmological neutrino mass bounds with unstable neutrinos Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages (up) 119 - 44pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Neutrino Physics
Abstract At present, cosmological observations set the most stringent bound on the neutrino mass scale. Within the standard cosmological model (Lambda CDM), the Planck collaboration reports Sigma m(v)< 0.12 eV at 95 % CL. This bound, taken at face value, excludes many neutrino mass models. However, unstable neutrinos, with lifetimes shorter than the age of the universe <tau>(nu) less than or similar to t(U), represent a particle physics avenue to relax this constraint. Motivated by this fact, we present a taxonomy of neutrino decay modes, categorizing them in terms of particle content and final decay products. Taking into account the relevant phenomenological bounds, our analysis shows that 2-body decaying neutrinos into BSM particles are a promising option to relax cosmological neutrino mass bounds. We then build a simple extension of the type I seesaw scenario by adding one sterile state nu (4) and a Goldstone boson phi, in which nu (i)-> nu (4)phi decays can loosen the neutrino mass bounds up to Sigma m(v) similar to 1 eV, without spoiling the light neutrino mass generation mechanism. Remarkably, this is possible for a large range of the right-handed neutrino masses, from the electroweak up to the GUT scale. We successfully implement this idea in the context of minimal neutrino mass models based on a U(1)(mu-tau) flavor symmetry, which are otherwise in tension with the current bound on Sigma m(v).
Address [Escudero, Miguel] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: miguel.escudero@kcl.ac.uk;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000601400500005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4661
Permanent link to this record
 

 
Author Agarwalla, S.K.; Huber, P.; Tang, J.A.; Winter, W.
Title Optimization of the Neutrino Factory, revisited Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages (up) 120 - 45pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We perform the baseline and energy optimization of the Neutrino Factory including the latest simulation results on the magnetized iron detector (MIND). We also consider the impact of tau decays, generated by v(mu) -> v(tau) or v(e) -> v(tau) appearance, on the mass hierarchy, CP violation, and theta(13) discovery reaches, which we find to be negligible for the considered detector. For the baseline-energy optimization for small sin(2) 2 theta(13), we qualitatively recover the results with earlier simulations of the MIND detector. We find optimal baselines of about 2 500km to 5 000km for the CP violation measurement, where now values of E-mu as low as about 12 GeV may be possible. However, for large sin(2) 2 theta(13), we demonstrate that the lower threshold and the backgrounds reconstructed at lower energies allow in fact for muon energies as low as 5 GeV at considerably shorter baselines, such as FNAL-Homestake. This implies that with the latest MIND analysis, low-and high-energy versions of the Neutrino Factory are just two different versions of the same experiment optimized for different parts of the parameter space. Apart from a green-field study of the updated detector performance, we discuss specific implementations for the two-baseline Neutrino Factory, where the considered detector sites are taken to be currently discussed underground laboratories. We find that reasonable setups can be found for the Neutrino Factory source in Asia, Europe, and North America, and that a triangular-shaped storage ring is possible in all cases based on geometrical arguments only.
Address [Agarwalla, Sanjib K.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Sanjib.Agarwalla@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000287937700037 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 551
Permanent link to this record
 

 
Author Felkl, T.; Herrero-Garcia, J.; Schmidt, M.A.
Title The singly-charged scalar singlet as the origin of neutrino masses Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages (up) 122 - 39pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We consider the generation of neutrino masses via a singly-charged scalar singlet. Under general assumptions we identify two distinct structures for the neutrino mass matrix. This yields a constraint for the antisymmetric Yukawa coupling of the singly-charged scalar singlet to two left-handed lepton doublets, irrespective of how the breaking of lepton-number conservation is achieved. The constraint disfavours large hierarchies among the Yukawa couplings. We study the implications for the phenomenology of lepton-flavour universality, measurements of the W-boson mass, flavour violation in the charged-lepton sector and decays of the singly-charged scalar singlet. We also discuss the parameter space that can address the Cabibbo Angle Anomaly.
Address [Felkl, Tobias; Schmidt, Michael A.] Univ New South Wales, Sch Phys, Sydney Consortium Particle Phys & Cosmol, Sydney, NSW 2052, Australia, Email: t.felkl@unsw.edu.au;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000656967200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4851
Permanent link to this record