toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cottin, G.; Helo, J.C.; Hirsch, M.; Silva, D. url  doi
openurl 
  Title Revisiting the LHC reach in the displaced region of the minimal left-right symmetric model Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 11 Pages (up) 115013 - 4pp  
  Keywords  
  Abstract We revisit discovery prospects for a long-lived sterile neutrino N at the LHC in the context of left-right symmetric theories. We focus on a displaced vertex search strategy sensitive to O(GeV) neutrino masses produced via a right-handed W-R boson. Both on-shell and off-shell Drell-Yan production of W-R are considered. We estimate the reach as a function of m(N) and m(WR). With root s = 13 TeV and 300/fb of integrated luminosity, the LHC can probe neutrino masses as high as approximately 30 GeV and m(wR) around 6 TeV. The reach goes up to 11.5 TeV with 3000/tb and m(N) similar to 45 GeV. This represents an improvement of a factor of 2 in sensitivity with respect to earlier work.  
  Address [Cottin, Giovanna] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan, Email: gcottin@phys.ntu.edu.tw  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000470867500008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4055  
Permanent link to this record
 

 
Author Arbelaez, C.; Carcamo Hernandez, A.E.; Cepedello, R.; Hirsch, M.; Kovalenko, S. url  doi
openurl 
  Title Radiative type-I seesaw neutrino masses Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 11 Pages (up) 115021 - 7pp  
  Keywords  
  Abstract We discuss a radiative type-I seesaw. In these models, the radiative generation of Dirac neutrino masses allows to explain the smallness of the observed neutrino mass scale for rather light right-handed neutrino masses in a type-1 seesaw. We first present the general idea in a model-independent way. This allows us to estimate the typical scale of right-handed neutrino mass as a function of the number of loops. We then present two example models, at the one- and two-loop level, which we use to discuss neutrino masses and lepton-flavor-violating constraints in more detail. For the two-loop example, right-handed neutrino masses must lie below 100 GeV, thus making this class of models testable in heavy neutral lepton searches.  
  Address [Arbelaez, Carolina; Carcamo Hernandez, A. E.; Kovalenko, Sergey] Univ Tecn Federico Santa Maria, Dept Phys, Ave Espana 1680, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000501488800006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4221  
Permanent link to this record
 

 
Author Carquin, E.; Neill, N.A.; Helo, J.C.; Hirsch, M. url  doi
openurl 
  Title Exotic colored fermions and lepton number violation at the LHC Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 11 Pages (up) 115028 - 9pp  
  Keywords  
  Abstract Majorana neutrino mass models with a scale of lepton number violation of order tem-electron-volts potentially lead to signals at the LHC. Here, we consider an extension of the standard model with a colored octet fermion and a scalar leptoquark. This model generates neutrino masses at two-loop order. We make a detailed Monte Carlo study of the lepton number violating signal at the LHC in this model, including a simulation of standard model backgrounds. Our forecast predicts that the LHC with 300/fb should be able to probe this model up to color-octet fermion masses in the range of (2.6-2.7) TeV, depending on the lepton flavor of the final state.  
  Address [Carquin, E.; Neill, N. A.] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110-V, Valparaiso, Chile, Email: edson.carquin@usm.cl;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000473024800004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4068  
Permanent link to this record
 

 
Author Hirsch, M.; Morisi, S.; Peinado, E.; Valle, J.W.F. url  doi
openurl 
  Title Discrete dark matter Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue 11 Pages (up) 116003 - 5pp  
  Keywords  
  Abstract We propose a new motivation for the stability of dark matter (DM). We suggest that the same non-Abelian discrete flavor symmetry which accounts for the observed pattern of neutrino oscillations, spontaneously breaks to a Z(2) subgroup which renders DM stable. The simplest scheme leads to a scalar doublet DM potentially detectable in nuclear recoil experiments, inverse neutrino mass hierarchy, hence a neutrinoless double beta decay rate accessible to upcoming searches, while theta(13) = 0 gives no CP violation in neutrino oscillations.  
  Address [Hirsch, M.; Morisi, S.; Peinado, E.; Vallex, J. W. F.] Univ Valencia, CSIC, AHEP Grp, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286565700007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 521  
Permanent link to this record
 

 
Author Curtin, D. et al; Hirsch, M. url  doi
openurl 
  Title Long-lived particles at the energy frontier: the MATHUSLA physics case Type Journal Article
  Year 2019 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 82 Issue 11 Pages (up) 116201 - 133pp  
  Keywords Large Hadron Collider; long-lived particles; hierarchy problem; dark matter; baryogenesis; neutrinos; simplified models  
  Abstract We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of standard model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the μm scale up to the Big Bang Nucleosynthesis limit of similar to 10(7) m. Neutral LLPs with lifetimes above similar to 100 m are particularly difficult to probe, as the sensitivity of the LHC main detectors is limited by challenging backgrounds, triggers, and small acceptances. MATHUSLA is a proposal for a minimally instrumented, large-volume surface detector near ATLAS or CMS. It would search for neutral LLPs produced in HL-LHC collisions by reconstructing displaced vertices (DVs) in a low-background environment, extending the sensitivity of the main detectors by orders of magnitude in the long-lifetime regime. We study the LLP physics opportunities afforded by a MATHUSLA-like detector at the HL-LHC, assuming backgrounds can be rejected as expected. We develop a model-independent approach to describe the sensitivity of MATHUSLA to BSM LLP signals, and compare it to DV and missing energy searches at ATLAS or CMS. We then explore the BSM motivations for LLPs in considerable detail, presenting a large number of new sensitivity studies. While our discussion is especially oriented towards the long-lifetime regime at MATHUSLA, this survey underlines the importance of a varied LLP search program at the LHC in general. By synthesizing these results into a general discussion of the top-down and bottom-up motivations for LLP searches, it is our aim to demonstrate the exceptional strength and breadth of the physics case for the construction of the MATHUSLA detector.  
  Address [Curtin, David] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada, Email: dcurtin@physics.utoronto.ca  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000499698000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4215  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva