Godbole, R. M., Maharathy, S. P., Mandal, S., Mitra, M., & Sinha, N. (2021). Interference effect in lepton number violating and conserving meson decays for a left-right symmetric model. Phys. Rev. D, 104(9), 095009–22pp.
Abstract: We study the effect of interference on the lepton number violating (LNV) and lepton number conserving (LNC) three-bodymeson decaysM(1)(+)-> l(i) (+) l(j)(+)pi(+/-) that arise in a TeV-scale left-right symmetric model (LRSM) with degenerate or nearly degenerate right-handed (RH) neutrinos. The LRSM contains three RH neutrinos and a RH gauge boson. The RH neutrinos with masses in the range of M-N similar to (MeV-few GeV) can give resonant enhancement in the semileptonic LNV and LNC meson decays. In the case where only one RH neutrino contributes to these decays, the predicted new physics branching ratios of semileptonic LNV and LNC meson decaysM(1)(+)-> l(i)(+) l(j)(+) pi(-) andM(+) 1 -> l(i)(+)l(j)(-) pi(+) are equal. We find that with at least two RH neutrinos contributing to the process, the LNV and LNC decay rates can differ. Depending on the neutrino mixing angles and CP-violating phases, the branching ratios of LNVand LNC decay channelsmediated by the heavy neutrinos can be either enhanced or suppressed, and the ratio of these two rates can differ from unity.
|
Anamiati, G., Fonseca, R. M., & Hirsch, M. (2018). Quasi-Dirac neutrino oscillations. Phys. Rev. D, 97(9), 095008–16pp.
Abstract: Dirac neutrino masses require two distinct neutral Weyl spinors per generation, with a special arrangement of masses and interactions with charged leptons. Once this arrangement is perturbed, lepton number is no longer conserved and neutrinos become Majorana particles. If these lepton number violating perturbations are small compared to the Dirac mass terms, neutrinos are quasi-Dirac particles. Alternatively, this scenario can be characterized by the existence of pairs of neutrinos with almost degenerate masses, and a lepton mixing matrix which has 12 angles and 12 phases. In this work we discuss the phenomenology of quasi-Dirac neutrino oscillations and derive limits on the relevant parameter space from various experiments. In one parameter perturbations of the Dirac limit, very stringent bounds can be derived on the mass splittings between the almost degenerate pairs of neutrinos. However, we also demonstrate that with suitable changes to the lepton mixing matrix, limits on such mass splittings are much weaker, or even completely absent. Finally, we consider the possibility that the mass splittings are too small to be measured and discuss bounds on the new, nonstandard lepton mixing angles from current experiments for this case.
|
Reig, M., Valle, J. W. F., & Wilczek, F. (2018). SO(3) family symmetry and axions. Phys. Rev. D, 98(9), 095008–6pp.
Abstract: Motivated by the idea of comprehensive unification, we study a gauged SO(3) flavor extension of the extended Standard Model, including right-handed neutrinos and a Peccei-Quinn symmetry with simple charge assignments. The model accommodates the observed fermion masses and mixings and yields a characteristic, successful relation among them. The Peccei-Quinn symmetry is an essential ingredient.
|
Berbig, M. (2024). Minimal solution to the axion isocurvature problem from nonminimal coupling. Phys. Rev. D, 110(9), 095008–11pp.
Abstract: The main limitation for preinflationary breaking of Peccei-Quinn (PQ) symmetry is the upper bound on the Hubble rate during inflation from axion isocurvature fluctuations. This leads to a tension between high scale inflation and QCD axions with grand unified theory scale decay constants, which reduces the potential for a detection of tensor modes at next generation cosmic microwave background (CMB) experiments. We propose a mechanism that explicitly breaks PQ symmetry via nonminimal coupling to gravity, that lifts the axion mass above the Hubble scale during inflation and has negligible impact on today's axion potential. The initially heavy axion gets trapped at an intermediate minimum during inflation given by the phase of the nonminimal coupling, before it moves to its true CP-conserving minimum after inflation. During this stage, it undergoes coherent oscillations around an adiabatically decreasing minimum, which slightly dilutes the axion energy density, while still being able to explain the observed dark matter relic abundance. This scenario can be tested by the combination of next generation CMB surveys like CMB-S4 and LiteBIRD with haloscopes such as ABRACADABRA, DMRadio, or CASPEr-Electric.
|
Barenboim, G., & Gago, A. M. (2024). Quantum decoherence effects: A complete treatment. Phys. Rev. D, 110(9), 095005–9pp.
Abstract: Physical systems in real life are inextricably linked to their surroundings and never completely separated from them. Truly closed systems do not exist. The phenomenon of decoherence, which is brought about by the interaction with the environment, removes the relative phase of quantum states in superposition and makes them incoherent. In neutrino physics, decoherence, although extensively studied has only been analyzed thus far exclusively in terms of its dissipative characteristics. While it is true that dissipation, or the exponential suppression, eventually is the main observable effect, the exchange of energy between the medium and the system, is an important factor that has been overlooked up until now. In this work, we introduce this term and analyze its consequences.
|
Câmara, H. B., Joaquim, F. R., & Valle, J. W. F. (2023). Dark-sector seeded solution to the strong CP problem. Phys. Rev. D, 108(9), 095003–6pp.
Abstract: We propose a novel realization of the Nelson-Barr mechanism “seeded” by a dark sector containing scalars and vectorlike quarks. Charge parity (CP) and a Z8 symmetry are spontaneously broken by the complex vacuum expectation value of a singlet scalar, leaving a residual Z2 symmetry that stabilizes dark matter (DM). A complex Cabibbo-Kobayashi-Maskawa matrix arises via one-loop corrections to the quark mass matrix mediated by the dark sector. In contrast with other proposals where nonzero contributions to the strong CP phase arise at the one-loop level, in our case this occurs only at two loops, enhancing naturalness. Our scenario also provides a viable weakly interacting massive particle scalar DM candidate.
|
Bonilla, C., Modak, T., Srivastava, R., & Valle, J. W. F. (2018). U(1)(B3-3L2) gauge symmetry as a simple description of b -> s anomalies. Phys. Rev. D, 98(9), 095002–11pp.
Abstract: We present a simple U(1)(B3-3L2) gauge standard model extension that can easily account for the anomalies in R(K) and R(K*) reported by LHCb. The model is economical in its setup and particle content. Among the standard model fermions, only the third generation quark family and the second generation leptons transform nontrivially under the new U(1)(B3-3L2) symmetry. This leads to lepton nonuniversality and flavor changing neutral currents involving the second and third quark families. We discuss the relevant experimental constraints and some implications.
|
Huang, F., Sanz, V., Shu, J., & Xue, X. (2021). LIGO as a probe of dark sectors. Phys. Rev. D, 104(10), 095001–9pp.
Abstract: We show how current LIGO data is able to probe interesting theories beyond the Standard Model, particularly dark sectors where a dark Higgs boson triggers symmetry breaking via a first-order phase transition. We use publicly available LIGO O2 data to illustrate how these sectors, even if disconnected from the Standard Model, can be probed by gravitational wave detectors. We link the LIGO measurements with the model content and mass scale of the dark sector, finding that current O2 data are testing a broad set of scenarios that can be mapped into many different types of dark-sector models where the breaking of SU(N) theories with Nf fermions is triggered by a dark Higgs boson at scales ? similar or equal to 108-109 GeV with reasonable parameters for the scalar potential.
|
Figueroa, D. G., Florio, A., & Torrenti, F. (2024). Present and future of Cosmo Lattice. Rep. Prog. Phys., 87(9), 094901–20pp.
Abstract: We discuss the present state and planned updates of Cosmo Lattice, a cutting-edge code for lattice simulations of non-linear dynamics of scalar-gauge field theories in an expanding background. We first review the current capabilities of the code, including the simulation of interacting singlet scalars and of Abelian and non-Abelian scalar-gauge theories. We also comment on new features recently implemented, such as the simulation of gravitational waves from scalar and gauge fields. Secondly, we discuss new extensions of C osmo L attice that we plan to release publicly. We comment on new physics modules, which include axion-gauge interactions phi FF , non-minimal gravitational couplings phi R-2 , creation and evolution of cosmic-defect networks, and magnetohydrodynamics. We also discuss new technical features, including evolvers for non-canonical interactions, arbitrary initial conditions, simulations in 2+1 dimensions, and higher-accuracy spatial derivatives.
|
Albandea, D., Catumba, G., & Ramos, A. (2024). Strong CP problem in the quantum rotor. Phys. Rev. D, 110(9), 094512–11pp.
Abstract: Recent studies have claimed that the strong CP problem does not occur in QCD, proposing a new order of limits in volume and topological sectors when studying observables on the lattice. In order to shed light on this issue, we study the effect of the topological theta-term on a simple quantum mechanical rotor that allows a lattice description. The topological susceptibility and the theta-dependence of the energy spectrum are both computed using local lattice correlation functions. The sign problem is overcome by considering Taylor expansions in theta, exploiting automatic differentiation methods for Monte Carlo processes. Our findings confirm the conventional wisdom on the strong CP problem.
|