|   | 
Details
   web
Records
Author BABAR Collaboration (Lees, J.P. et al); Martinez-Vidal, F.; Oyanguren, A.
Title Study of the process e(+) e(-) -> pi(+)pi (-) pi(0) using initial state radiation with BABAR Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 11 Pages (down) 112003 - 31pp
Keywords
Abstract The process e(+)e(-) -> pi(+) pi(-) pi(0)gamma is studied at a center-of-mass energy near the Upsilon(4S) resonance using a data sample of 469 fb(-1) collected with the BABAR detector at the PEP-II collider. We have performed a precise measurement of the e(+)e(-) -> pi(+) pi(-) pi(0) cross section in the center-of-mass energy range from 0.62 to 3.5 GeV. In the energy regions of the omega and phi resonances, the cross section is measured with a systematic uncertainty of 1.3%. The leading-order hadronic contribution to the muon magnetic anomaly calculated using the measured e(+) e(-) -> pi(+) pi(-) pi(0) cross section from threshold to 2.0 GeV is (45.86 +/- 0.14 +/- 0.58) x 10(-10). From the fit to the measured 3 pi mass spectrum we have determined the resonance parameters Gamma(omega -> e(+)e(-)) B(omega -> pi(+) pi- pi(0)) = (0.5698 +/- 0.0031 +/- 0.0082) keV, Gamma(phi -> e(+)e(-)) B(phi -> pi(+) pi(-)pi(0)) = (0.1841 +/- 0.0021 +/- 0.0080) keV, and B(rho -> 3 pi) = (0.88 +/- 0.23 +/- 0.30) x 10(-4). The significance of the rho -> 3 pi signal is greater than 6 sigma. For the J/psi resonance we have measured the product Gamma(J/psi -> e(+) e(-)) B (J/psi -> 3 pi) = (0.1248 +/- 0.0019 +/- 0.0026) keV.
Address [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, Lab Annecyle Le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000753915900007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5117
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.
Title Observation of the Mass Difference Between Neutral Charm-Meson Eigenstates Type Journal Article
Year 2021 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 127 Issue 11 Pages (down) 111801 - 12pp
Keywords
Abstract A measurement of mixing and CP violation in neutral charm mesons is performed using data reconstructed in proton-proton collisions collected by the LHCb experiment from 2016 to 2018, corresponding to an integrated luminosity of 5.4 fb(-1). A total of 30.6 million D0 -> K-s(0)pi(+)pi(-) decays are analyzed using a method optimized for the measurement of the mass difference between neutral charmmeson eigenstates. Allowing for CP violation in mixing and in the interference between mixing and decay, the mass and decay-width differences are measured to be x(CP) = [3.97 +/- 0.46(stat) +/- 0.29(syst)] x 10(-3) and y(CP) = [4.59 +/- 1.20(stat) +/- 0.85(syst)] x 10(-3), respectively. The CP-violating parameters are measured as Delta x= [-0.27 +/- 0.18(stat)+/- 0.01(syst)] x 10 (-3) and Delta y = [0.20 +/- 0.36(stat) +/- 0.13(syst)] x 10(-3). This is the first observation of a nonzero mass difference in the D-0 meson system, with a significance exceeding seven standard deviations. The data are consistent with CP symmetry and improve existing constraints on the associated parameters.
Address [Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000693639800004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4965
Permanent link to this record
 

 
Author Fabbri, A.; Balbinot, R.
Title Ramp-up of Hawking Radiation in Bose-Einstein-Condensate Analog Black Holes Type Journal Article
Year 2021 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 126 Issue 11 Pages (down) 111301 - 6pp
Keywords
Abstract Inspired by a recent experiment by Steinhauer and co-workers, we present a simple model which describes the formation of an acoustic black hole in a Bose-Einstein condensate, allowing an analytical computation of the evolution in time of the corresponding density-density correlator. We show the emergence of analog Hawking radiation out of a “quantum atmosphere” region significantly displaced from the horizon. This is quantitatively studied both at T = 0 and even in the presence of an initial temperature T, as is always the case experimentally.
Address [Fabbri, Alessandro] Ctr Mixto Univ Valencia, CSIC, Dept Fis Teor, C Dr Moliner 50, Burjassot 46100, Spain, Email: afabbri@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000652825400006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4842
Permanent link to this record
 

 
Author NA64 Collaboration (Andreev, Y.M. et al); Molina Bueno, L.
Title Search for pseudoscalar bosons decaying into e(+)e(-) pairs in the NA64 experiment at the CERN SPS Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 11 Pages (down) L111102 - 5pp
Keywords
Abstract We report the results of a search for a light pseudoscalar particle a that couples to electrons and decays to e(+) e(-) perfbnned using the high-energy CERN SPS H4 electron beam. If such light pseudoscalar exists, it could explain the ATOMKI anomaly (an excess of e(+) e(-) pairs in the nuclear transitions of Be-8 and 4 He nuclei at the invariant mass similar or equal to 17 MeV observed by the experiment at the 5 MV Van de Graaff accelerator at ATOMKI, Hungary). We used the NA64 data collected in the “visible mode” configuration with a total statistics corresponding to 8.4 x 10(10) electrons on target (EOT) in 2017 and 2018. In order to increase sensitivity to small coupling parameter epsilon we also used the data collected in 2016-2018 in the “invisible mode” configuration of NA64 with a total statistics corresponding to 2.84 x 10(11) EOT. The background and efficiency estimates for these two configurations were retained from our previous analyses searching for light vector bosons and axionlike particles (ALP) (the latter were assumed to couple predominantly to gamma). In this work we recalculate the signal yields, which are different due to different cross section and lifetime of a pseudoscalar particle a, and perform a new statistical analysis. As a result, the region of the two dimensional parameter space m(a) – epsilon in the mass range from 1 to 17.1 MeV is excluded. At the mass of the central value of the ATOMKI anomaly (the first result obtained on the beryllium nucleus, 16.7 MeV) the values of epsilon in the range 2.1 x 10(-4) < epsilon < 3.2 x 10(-4) are excluded.
Address [Hoesgen, M.; Ketzer, B.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000738796900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5071
Permanent link to this record
 

 
Author Agostini, P. et al; Mandal, S.
Title The Large Hadron-Electron Collider at the HL-LHC Type Journal Article
Year 2021 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 48 Issue 11 Pages (down) 110501 - 364pp
Keywords deep-inelastic scattering; high-lumi LHC; QCD; Higgs; top and electroweak physics; nuclear physics; beyond Standard Model; energy-recovery-linac; accelerator physics
Abstract The Large Hadron-Electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy-recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High-Luminosity Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron-proton and proton-proton operations. This report represents an update to the LHeC's conceptual design report (CDR), published in 2012. It comprises new results on the parton structure of the proton and heavier nuclei, QCD dynamics, and electroweak and top-quark physics. It is shown how the LHeC will open a new chapter of nuclear particle physics by extending the accessible kinematic range of lepton-nucleus scattering by several orders of magnitude. Due to its enhanced luminosity and large energy and the cleanliness of the final hadronic states, the LHeC has a strong Higgs physics programme and its own discovery potential for new physics. Building on the 2012 CDR, this report contains a detailed updated design for the energy-recovery electron linac (ERL), including a new lattice, magnet and superconducting radio-frequency technology, and further components. Challenges of energy recovery are described, and the lower-energy, high-current, three-turn ERL facility, PERLE at Orsay, is presented, which uses the LHeC characteristics serving as a development facility for the design and operation of the LHeC. An updated detector design is presented corresponding to the acceptance, resolution, and calibration goals that arise from the Higgs and parton-density-function physics programmes. This paper also presents novel results for the Future Circular Collider in electron-hadron (FCC-eh) mode, which utilises the same ERL technology to further extend the reach of DIS to even higher centre-of-mass energies.
Address [Agostini, P.; Armesto, N.; Ferreiro, E. G.; Salgado, C. A.] Univ Santiago de Compostela USC, Santiago De Compostela, Spain, Email: britzger@mpp.mpg.de;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000731762500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5067
Permanent link to this record