|   | 
Details
   web
Records
Author Alimena, J. et al; Hirsch, M.; Mamuzic, J.; Mitsou, V.A.; Santra, A.
Title Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider Type Journal Article
Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 47 Issue 9 Pages (up) 090501 - 226pp
Keywords beyond the Standard Model; long-lived particles; Large Hadron Collider; high-luminosity LHC; collider phenomenology; high-energy collider experiments
Abstract Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments-as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER-to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity 'dark showers', highlighting opportunities for expanding the LHC reach for these signals.
Address [Alimena, Juliette; Hill, Christopher S.] Ohio State Univ, Dept Phys, 191 W Woodruff Ave, Columbus, OH 43210 USA, Email: juliette.alimena@cern.ch;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000570614200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4535
Permanent link to this record
 

 
Author Hirsch, M.; Reichert, L.; Porod, W.; Staub, F.
Title Phenomenology of a supersymmetric U(1)(B-L) x U(1)(R) extension of the standard model with inverse seesaw mechanism Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 9 Pages (up) 093018 - 26pp
Keywords
Abstract We discuss the minimal supersymmetric U(1)(B-L) X U(1)(R) extension of the standard model. Gauge couplings unify as in the minimal supersymmetric standard model (MSSM), even if the scale of U(1)(B-L) X U(1)(R) breaking is as low as order TeV and the model can be embedded into a SO(10) grand unified theory. The phenomenology of the model differs in some important aspects from the MSSM, leading potentially to rich phenomenology at the LHC. It predicts more light Higgs states and the mostly left CP-even Higgs having a mass that easily reaches 125 GeV, with no constraints on the supersymmetry spectrum. Right sneutrinos can be the lightest supersymmetric particle, changing all dark matter constraints on supersymmetry parameter space. The model has seven neutralinos, and squark/gluino decay chains involve more complicated cascades than in the MSSM. We also briefly discuss low-energy and accelerator constraints on the model, where the most important limits come from recent Z' searches at the LHC and upper limits on lepton flavor violation.
Address [Hirsch, M.; Reichert, L.; Porod, W.] Univ Valencia, CSIC, Inst Fis Corpuscular, Astroparticles & High Energy Phys Grp, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000311142800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1221
Permanent link to this record
 

 
Author Anamiati, G.; Fonseca, R.M.; Hirsch, M.
Title Quasi-Dirac neutrino oscillations Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 9 Pages (up) 095008 - 16pp
Keywords
Abstract Dirac neutrino masses require two distinct neutral Weyl spinors per generation, with a special arrangement of masses and interactions with charged leptons. Once this arrangement is perturbed, lepton number is no longer conserved and neutrinos become Majorana particles. If these lepton number violating perturbations are small compared to the Dirac mass terms, neutrinos are quasi-Dirac particles. Alternatively, this scenario can be characterized by the existence of pairs of neutrinos with almost degenerate masses, and a lepton mixing matrix which has 12 angles and 12 phases. In this work we discuss the phenomenology of quasi-Dirac neutrino oscillations and derive limits on the relevant parameter space from various experiments. In one parameter perturbations of the Dirac limit, very stringent bounds can be derived on the mass splittings between the almost degenerate pairs of neutrinos. However, we also demonstrate that with suitable changes to the lepton mixing matrix, limits on such mass splittings are much weaker, or even completely absent. Finally, we consider the possibility that the mass splittings are too small to be measured and discuss bounds on the new, nonstandard lepton mixing angles from current experiments for this case.
Address [Anamiati, Gaetana; Fonseca, Renato M.; Hirsch, Martin] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: anamiati@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000432970600004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3581
Permanent link to this record
 

 
Author Helo, J.C.; Hirsch, M.; Ota, T.
Title Proton decay at one loop Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 99 Issue 9 Pages (up) 095021 - 14pp
Keywords
Abstract Proton decay is usually discussed in the context of grand unified theories. However, as is well known, in the standard model effective theory proton decay appears in the form of higher-dimensional non-renormalizable operators. Here, we study systematically the one-loop decomposition of the d = 6 B + L violating operators. We exhaustively list the possible one-loop ultraviolet completions of these operators and discuss that, in general, two distinct classes of models appear. Models in the first class need an additional symmetry in order to avoid tree-level proton decay. These models necessarily contain a neutral particle, which could act as a dark matter candidate. For models in the second class the loop contribution dominates automatically over the tree-level proton decay, without the need for additional symmetries. We also discuss possible phenomenology of two example models, one from each class, and their possible connections to neutrino masses, LHC searches and dark matter.
Address [Helo, Juan Carlos] Univ La Serena, Dept Fis, Fac Ciencias, Ave Cisternas 1200, La Serena 1200, Chile, Email: jchelo@userena.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000469019900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4035
Permanent link to this record
 

 
Author Arbelaez, C.; Cottin, G.; Helo, J.C.; Hirsch, M.
Title Long-lived charged particles and multilepton signatures from neutrino mass models Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 9 Pages (up) 095033 - 13pp
Keywords
Abstract Lepton number violation (LNV) is usually searched for by the LHC collaborations using the same-sign dilepton plus jet signature. In this paper, we discuss multilepton signals of LNV that can arise with experimentally interesting rates in certain loop models of neutrino mass generation. Interestingly, in such models, the observed smallness of the active neutrino masses, together with the high multiplicity of the final states, leads in large parts of the viable parameter space of such models to the prediction of long-lived charged particles, which leave highly ionizing tracks in the detectors. We focus on one particular one-loop neutrino mass model in this class and discuss its LHC phenomenology in some detail.
Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Av Espana 1680,Casilla 110-5, Valparaiso 2340000, Chile, Email: carolina.arbelaez@usm.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000535451000011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4403
Permanent link to this record