|   | 
Details
   web
Records
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C.
Title Measurement of Angular and CP Asymmetries in D-0 -> pi(+) pi(-) mu(+) mu(-) and D-0 -> K+ K- mu(+) mu(-) Decays Type Journal Article
Year 2018 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 121 Issue 9 Pages (down) 091801 - 10pp
Keywords
Abstract The first measurements of the forward-backward asymmetry of the dimuon pair (A(FB)), the triple-product asymmetry (A(2 phi)), and the charge-parity-conjugation asymmetry (A(CP)), in D-0 -> pi(+) pi(-) mu(+) mu(-) and -> D-0 -> K+ K- mu(+) mu(-) decays are reported. They are performed using data from proton-proton collisions collected with the LHCb experiment from 2011 to 2016, corresponding to a total integrated luminosity of 5 fb(-1). The asymmetries are measured to be A(FB) (D-0 -> pi(+) pi(-) mu(+) mu(-)) = (3.3 +/- 3.7 +/- 0.6)%, A(2 phi) (D-0 -> pi(+) pi(-) mu(+) mu(-)) = (-0.6 +/- 3.7 +/- 0.6)%, A(CP) (D-0 -> pi(+) pi(-) mu(+) mu(-)) = (4.9 +/- 3.8 +/- 0.7)%, A(FB) (D-0 -> K+ K- mu(+) mu(-)) = (0 +/- 11 +/- 2 +/-)%, A(2 phi) (D-0 -> K+ K- mu(+) mu(-)) = (9 +/- 11 +/- 1)%, A(CP) (D-0 -> K+ K- mu(+) mu(-)) = (0 +/- 11 +/- 2)% where the first uncertainty is statistical and the second systematic. The asymmetries are also measured as a function of the dimuon invariant mass. The results are consistent with the standard model predictions.
Address [Bediaga, I.; Cruz Torres, M.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; Molina Rodriguez, J.; dos Reis, A. C.; Soares Lavra, L.; Tourinho Jadallah Aoude, R.] CBPF, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000443146700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3705
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Valls, P.; Ruiz Vidal, J.; Sanchez Mayordomo, C.
Title Search for the rare decay Lambda(+)(c) -> p mu(+ )mu(-) Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 9 Pages (down) 091101 - 10pp
Keywords
Abstract A search for the flavor-changing neutral-current decay Lambda(+)(c) -> p mu(+)mu(-) is reported using a data set corresponding to an integrated luminosity of 3.0 fb(-1) collected by the LHCb Collaboration. No significant signal is observed outside of the dimuon mass regions around the phi and omega resonances, and an upper limit is placed on the branching fraction of B(Lambda(+ )(c)-> p mu(+)mu(-)) < 7.7(9.6) x 10(-8) at 90%(95%) confidence level. A significant signal is observed in the omega dimuon mass region for the first time.
Address [Bediaga, I; Cruz Torres, M.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; Molina Rodriguez, J.; dos Reis, A. C.; Soares Lavra, L.; Stah, M.; Tourinho Jadallah Aoude, R.] CBPF, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000432963300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3593
Permanent link to this record
 

 
Author Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D.
Title Coupling matter in modified Q gravity Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 8 Pages (down) 084043 - 13pp
Keywords
Abstract We present a novel theory of gravity by considering an extension of symmetric teleparallel gravity. This is done by introducing, in the framework of the metric-affine formalism, a new class of theories where the nonmetricity Q is nonminimally coupled to the matter Lagrangian. More specifically, we consider a Lagrangian of the form L similar to f(1)(Q) + f(2)(Q)L-M, where f(1) and f(2) are generic functions of Q, and L-M is the matter Lagrangian. This nonminimal coupling entails the nonconservation of the energy-momentum tensor, and consequently the appearance of an extra force. The formulation of the gravity sector in terms of the Q instead of the curvature may result in subtle improvements of the theory. In the context of nonminimal matter couplings, we are therefore motivated to explore whether the new geometrical formulation in terms of the Q, when implemented also in the matter sector, would allow more universally consistent and viable realizations of the nonminimal coupling. Furthermore, we consider several cosmological applications by presenting the evolution equations and imposing specific functional forms of the functions f(1)(Q) and f(2)(Q), such as power-law and exponential dependencies of the nonminimal couplings. Cosmological solutions are considered in two general classes of models, and found to feature accelerating expansion at late times.
Address [Harko, Tiberiu] Babes Bolyai Univ, Dept Phys, Kogalniceanu St, Cluj Napoca 400084, Romania, Email: t.harko@ucl.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000448458600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3789
Permanent link to this record
 

 
Author Barenboim, G.; Kinney, W.H.; Morse, M.J.P.
Title Phantom Dirac-Born-Infeld dark energy Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 8 Pages (down) 083531 - 11pp
Keywords
Abstract Motivated by the apparent discrepancy between cosmic microwave background measurements of the Hubble constant and measurements from Type-la supernovae, we construct a model for dark energy with equation of state w = p/rho < -1, violating the null energy condition. Naive canonical models of so-called “phantom” dark energy require a negative scalar kinetic term, resulting in a Hamiltonian unbounded from below and associated vacuum instability. We construct a scalar field model for dark energy with w < -1, which nonetheless has a Hamiltonian bounded from below in the comoving reference frame, i.e., in the rest frame of the fluid. We demonstrate that the solution is a cosmological attractor, and find that early-time cosmological boundary conditions consist of a “frozen” scalar field, which relaxes to the attractor solution once the dark energy component dominates the cosmological energy density. We consider the model in an arbitrary choice of gauge, and find that, unlike the case of comoving gauge, the fluid Hamiltonian is in fact unbounded from below in the reference frame of a highly boosted observer, corresponding to a nonlinear gradient instability. We discuss this in the context of general NEC-violating perfect fluids, for which this instability is a general property.
Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000447934300002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3771
Permanent link to this record
 

 
Author Vagnozzi, S.; Dhawan, S.; Gerbino, M.; Freese, K.; Goobar, A.; Mena, O.
Title Constraints on the sum of the neutrino masses in dynamical dark energy models with w(z) >=-1 are tighter than those obtained in Lambda CDM Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 8 Pages (down) 083501 - 20pp
Keywords
Abstract We explore cosmological constraints on the sum of the three active neutrino masses M-v in the context of dynamical dark energy (DDE) models with equation of state (EoS) parametrized as a function of redshift z by w(z) = w(0) + w(a)z/ (1 + z), and satisfying w(z) >= -1 for all z. We make use of cosmic microwave background data from the Planck satellite, baryon acoustic oscillation measurements, and supernovae la luminosity distance measurements, and perform a Bayesian analysis. We show that, within these models, the bounds on M-v do not degrade with respect to those obtained in the Lambda CDM case; in fact, the bounds arc slightly tighter, despite the enlarged parameter space. We explain our results based on the observation that, for fixed choices of w(0), w(a) such that w(z) >= -1 (but not w = -1 for all z), the upper limit on M-v is tighter than the Lambda CDM limit because of the well-known degeneracy between w and M-v. The Bayesian analysis we have carried out then integrates over the possible values of w(0)-w(a) such that w(z) >= -1, all of which correspond to tighter limits on M-v than the Lambda CDM limit. We find a 95% credible interval (C.I.) upper bound of M-v < 0.13 eV. This bound can be compared with the 95% C.I. upper bounds of M-v < 0.16 eV, obtained within the Lambda CDM model, and M-v < 0.41 eV, obtained in a DDE model with arbitrary EoS (which allows values of w < -1). Contrary to the results derived for DDE models with arbitrary EoS, we find that a dark energy component with w(z) >= -1 is unable to alleviate the tension between high-redshift observables and direct measurements of the Hubble constant H o . Finally, in light of the results of this analysis, we also discuss the implications for DDE models of a possible determination of the neutrino mass ordering by laboratory searches.
Address [Vagnozzi, Sunny; Dhawan, Suhail; Gerbino, Martina; Freese, Katherine; Goobar, Ariel] Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, SE-10691 Stockholm, Sweden, Email: sunny.vagnozzi@fysik.su.se
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000446136900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3749
Permanent link to this record