|   | 
Details
   web
Records
Author Alcaide, J.; Mileo, N.I.
Title LHC sensitivity to singly charged scalars decaying into electrons and muons Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 7 Pages (down) 075030 - 11pp
Keywords
Abstract Current LHC searches for nonsupersymmetric singly charged scalars, based on two-Higgs-doublet models, in general, focus the analysis in third-generation fermions in the final state. However, singly charged scalars in alternative extensions of the scalar sector involve Yukawa couplings not proportional to the mass of the fermions. Assuming the scalar decays into electrons and muons, it can manifest cleaner experimental signatures. In this paper, we suggest that a singly charged scalar singlet, with electroweak production, can start to be probed in the near future with dedicated search strategies. Depending on the strength of the Yukawa couplings, two independent scenarios arc considered: direct pair production (small couplings) and single production via a virtual neutrino exchange (large couplings). We show that, up to a mass as large as 500 GeV, most of the parameter space could be excluded at the 95% C.L. in a high-luminosity phase of the LHC. Our results also apply to other frameworks, provided the singly charged scalar exhibits similar production patterns and dominant decay modes.
Address [Alcaide, Julien] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: julien.alcaide@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000582241100010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4580
Permanent link to this record
 

 
Author Forero, D.V.; Giunti, C.; Ternes, C.A.; Tortola, M.
Title Nonunitary neutrino mixing in short and long-baseline experiments Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 7 Pages (down) 075030 - 11pp
Keywords
Abstract Nonunitary neutrino mixing in the light neutrino sector is a direct consequence of type-I seesaw neutrino mass models. In these models, light neutrino mixing is described by a submatrix of the full lepton mixing matrix and, then, it is not unitary in general. In consequence, neutrino oscillations are characterized by additional parameters, including new sources of CP violation. Here we perform a combined analysis of short and long-baseline neutrino oscillation data in this extended mixing scenario. We did not find a significant deviation from unitary mixing, and the complementary data sets have been used to constrain the nonunitarity parameters. We have also found that the T2K and NOvA tension in the determination of the Dirac CP-phase is not alleviated in the context of nonunitary neutrino mixing.
Address [Forero, D. V.] Univ Medellin, Carrera 87 N 30-65, Medellin, Colombia, Email: dvanegas@udem.edu.co;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000753716600006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5121
Permanent link to this record
 

 
Author Cordero-Carrion, I.; Hirsch, M.; Vicente, A.
Title Master Majorana neutrino mass parametrization Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 99 Issue 7 Pages (down) 075019 - 6pp
Keywords
Abstract After introducing a master formula for the Majorana neutrino mass matrix, we present a master parametrization for the Yukawa matrices automatically in agreement with neutrino oscillation data. This parametrization can be used for any model that induces Majorana neutrino masses. The application of the master parametrization is also illustrated in an example model, with special focus on its lepton flavor violating phenomenology.
Address [Cordero-Carrion, I.] Univ Valencia, Dept Matemat, E-46100 Valencia, Spain, Email: isabel.cordero@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000464743100007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3981
Permanent link to this record
 

 
Author Chatterjee, S.S.; Miranda, O.G.; Tortola, M.; Valle, J.W.F.
Title Nonunitarity of the lepton mixing matrix at the European Spallation Source Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 7 Pages (down) 075016 - 16pp
Keywords
Abstract If neutrinos get mass through the exchange of lepton mediators, as in seesaw schemes, the neutrino appearance probabilities in oscillation experiments are modified due to effective nonunitarity of the lepton mixing matrix. This also leads to new CP phases and an ambiguity in underpinning the “conventional” phase of the three-neutrino paradigm. We study the CP sensitivities of various setups based at the European Spallation Source neutrino super-beam (ESSnuSB) experiment in the presence of nonunitarity. We also examine its potential in constraining the associated new physics parameters. Moreover, we show how the combination of DUNE and ESSnuSB can help further improve the sensitivities on the nonunitarity parameters.
Address [Chatterjee, Sabya Sachi] Univ Paris Saclay, Inst Phys Theor, CNRS, CEA, F-91191 Gif Sur Yvette, France, Email: sabya-sachi.chatterjee@ipht.fr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000898616000007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5440
Permanent link to this record
 

 
Author Bigaran, I.; Felkl, T.; Hagedorn, C.; Schmidt, M.A.
Title Flavor anomalies meet flavor symmetry Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 7 Pages (down) 075014 - 77pp
Keywords
Abstract We construct an extension of the Standard Model with a scalar leptoquark Q iota similar to (3,1, – 13) and the discrete flavor symmetry Gf _ D17 x Z17 to explain anomalies observed in charged-current semileptonic B meson decays and in the muon anomalous magnetic moment, together with the charged fermion masses and quark mixing. The symmetry Zdiag 17 , contained in Gf, remains preserved by the leptoquark couplings, at leading order, and efficiently suppresses couplings of the leptoquark to the first generation of quarks and/or electrons, thus avoiding many stringent experimental bounds. The strongest constraints on the parameter space are imposed by the radiative charged lepton flavor violating decays a -mu y and μ-ey. A detailed analytical and numerical study demonstrates the feasibility to simultaneously explain the data on the lepton flavor universality ratios R(D) and R(D*) and the muon anomalous magnetic moment, while passing the experimental bounds from all other considered flavor observables.
Address [Bigaran, Innes] Univ Melbourne, ARC Ctr Excellence Dark Matter Particle Phys, Sch Phys, Melbourne, Vic 3010, Australia, Email: ibigaran@fnal.gov;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001092627100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5778
Permanent link to this record
 

 
Author Domingo, F.; Kim, J.S.; Martin Lozano, V.; Martin-Ramiro, P.; Ruiz de Austri, R.
Title Confronting the neutralino and chargino sector of the NMSSM with the multilepton searches at the LHC Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 7 Pages (down) 075010 - 29pp
Keywords
Abstract We test the impact of the ATLAS and CMS multilepton searches performed at the LHC with 8 as well as 13 TeV center-of-mass energy (using only the pre-2018 results) on the chargino and neutralino sector of the next-to-minimal supersymmetric Standard Model (NMSSM). Our purpose consists in analyzing the actual reach of these searches for a full model and in emphasizing effects beyond the minimal supersymmetric Standard Model (MSSM) that affect the performance of current (MSSM-inspired) electroweakino searches. To this end, we consider several scenarios characterizing specific features of the NMSSM electroweakino sector. We then perform a detailed collider study, generating Monte Carlo events through PYTHIA and testing against current LHC constraints implemented in the public tool CheckMATE. We find e.g., that supersymmetric decay chains involving intermediate singlino or Higgs-singlet states can modify the naive MSSM-like picture of the constraints by inducing final states with softer or less easily identifiable SM particles-reversely, a compressed configuration with singlino next-to-lightest supersymmetric particle occasionally induces final states that are rich with photons, which could provide complementary search channels.
Address [Domingo, Florian; Lozano, Victor Martin] Univ Bonn, Bethe Ctr Theoret Phys, Nussallee 12, D-53115 Bonn, Germany, Email: florian.domingo@csic.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000524546800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4365
Permanent link to this record
 

 
Author Coito, L.; Faubel, C.; Santamaria, A.
Title Composite Higgs bosons from neutrino condensates in an inverted seesaw scenario Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 7 Pages (down) 075009 - 10pp
Keywords
Abstract We present a realization of the idea that the Higgs boson is mainly a bound state of neutrinos induced by strong four-fermion interactions. The conflicts of this idea with the measured values of the top quark and Higgs boson masses are overcome by introducing, in addition to the right-handed neutrino, a new fermion singlet, which, at low energies, implements the inverse seesaw mechanism. The singlet fermions also develop a scalar bound state that mixes with the Higgs boson. This allows us to obtain a small Higgs boson mass even if the couplings are large, as required in composite scalar scenarios. The model gives the correct masses for the top quark and Higgs boson for compositeness scales below the Planck scale and masses of the new particles above the electroweak scale, so that we obtain naturally a low-scale seesaw scenario for neutrino masses. The theory contains additional scalar particles coupled to the neutral fermions, which could be tested in present and near future experiments.
Address [Coito, Leonardo; Faubel, Carlos; Santamaria, Arcadi] Univ Valencia, Dept Fis Teor, Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: leonardo.coito@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000524321800009 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4371
Permanent link to this record
 

 
Author Nath, N.; Srivastava, R.; Valle, J.W.F.
Title Testing generalized CP symmetries with precision studies at DUNE Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 99 Issue 7 Pages (down) 075005 - 13pp
Keywords
Abstract We examine the capabilities of the DUNE experiment in probing leptonic CP violation within the framework of theories with generalized CP symmetries characterized by the texture zeros of the corresponding CP transformation matrices. We investigate DUNE's potential to probe the two least known oscillation parameters, the atmospheric mixing angle theta(23) and the Dirac CP phase delta(CP). We fix theory-motivated benchmarks for (sin(2)theta(23), delta(CP)) and take them as true values in our simulations. Assuming 3.5 years of neutrino running plus 3.5 years in the antineutrino mode, we show that in all cases DUNE can significantly constrain and in certain cases rule out the generalized CP texture zero patterns.
Address [Nath, Newton] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China, Email: newton@ihep.ac.cn;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000463893200004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3976
Permanent link to this record
 

 
Author Arbelaez, C.; Cepedello, R.; Fonseca, R.M.; Hirsch, M.
Title (g-2) anomalies and neutrino mass Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 7 Pages (down) 075005 - 14pp
Keywords
Abstract Motivated by the experimentally observed deviations from standard model predictions, we calculate the anomalous magnetic moments a(alpha) = (g – 2)(alpha) for a = e, μin a neutrino mass model originally proposed by Babu, Nandi, and Tavartkiladze (BNT). We discuss two variants of the model: the original model, and a minimally extended version with an additional hypercharge-zero triplet scalar. While the original BNT model can explain a(mu), only the variant with the triplet scalar can explain both experimental anomalies. The heavy fermions of the model can be produced at the high-luminosity LHC, and in the part of parameter space where the model explains the experimental anomalies it predicts certain specific decay patterns for the exotic fermions.
Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000576053400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4557
Permanent link to this record
 

 
Author Bhattacharya, S.; Sil, A.; Roshan, R.; Vatsyayan, D.
Title Symmetry origin of baryon asymmetry, dark matter, and neutrino mass Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 7 Pages (down) 075005 - 10pp
Keywords
Abstract We propose a minimal model based on lepton number symmetry (and violation), to address a common origin of baryon asymmetry, dark matter and neutrino mass generation. The model consists of a vectorlike fermion to constitute the dark sector, three right-handed neutrinos (RHNs) to dictate leptogenesis and neutrino mass, while an additional complex scalar is assumed to be present in the early Universe the decay of which produces both dark matter and RHNs via lepton number violating and lepton number conserving interactions respectively. Interestingly, the presence of the same scalar helps in making the electroweak vacuum stable until the Planck scale. The unnatural largeness and smallness of the parameters required to describe correct experimental limits are attributed to lepton number violation. The allowed parameter space of the model is illustrated via a numerical scan.
Address [Bhattacharya, Subhaditya; Sil, Arunansu] Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, Assam, India, Email: subhab@iitg.ac.in;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000874548200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5402
Permanent link to this record