toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author XENON100 Collaboration (Aprile, E. et al); Orrigo, S.E.A. url  doi
openurl 
  Title Low-mass dark matter search using ionization signals in XENON100 Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 94 Issue 9 Pages (down) 092001 - 6pp  
  Keywords  
  Abstract We perform a low-mass dark matter search using an exposure of 30 kg x yr with the XENON100 detector. By dropping the requirement of a scintillation signal and using only the ionization signal to determine the interaction energy, we lowered the energy threshold for detection to 0.7 keV for nuclear recoils. No dark matter detection can be claimed because a complete background model cannot be constructed without a primary scintillation signal. Instead, we compute an upper limit on the WIMP-nucleon scattering cross section under the assumption that every event passing our selection criteria could be a signal event. Using an energy interval from 0.7 keV to 9.1 keV, we derive a limit on the spin-independent WIMP-nucleon cross section that excludes WIMPs with a mass of 6 GeV/c(2) above 1.4 x 10(-41) cm(2) at 90% confidence level.  
  Address [Aprile, E.; Anthony, M.; de Perio, P.; Goetzke, L. W.; Greene, Z.; Fernandez, A. J. Melgarejo; Messina, M.; Plante, G.; Rizzo, A.; Weber, M.; Zhang, Y.] Columbia Univ, Dept Phys, New York, NY 10027 USA, Email: ran.budnik@weizmann.ac.il;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000386772500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2845  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Valls, P.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Study of B-c(+) decays to the K+K-pi(+) final state and evidence for the decay B-c(+) -> chi(c0)pi(+) Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 94 Issue 9 Pages (down) 091102 - 10pp  
  Keywords  
  Abstract A study of B-c(+) -> K+K-pi(+) decays is performed for the first time using data corresponding to an integrated luminosity of 3.0 fb(-1) collected by the LHCb experiment in pp collisions at center-of-mass energies of 7 and 8 TeV. Evidence for the decay B-c(+) -> chi(c0)(K+K-)pi(+) is reported with a significance of 4.0 standard deviations, giving sigma(B-c(+))/sigma(B+) x B(B-c(+) -> chi(c0)pi+) = (9.8(-3.0)(+3.4)(stat) +/- 0.8(stat)) x 10(-6). Here B denotes a branching fraction while sigma(B-c(+)) and sigma(B+) are the production cross sections for B-c(+) and B+ mesons. An indication of (b) over barc weak annihilation is found for the region m(K-pi(+)) < 1.834 GeV/c(2), with a significance of 2.4 standard deviations.  
  Address [Bediaga, I.; De Miranda, J. M.; Ferreira Rodrigues, F.; Gomes, A.; Massafferri, A.; dos Reis, A. C.; Rodrigues, A. B.; Vieira, D.] CBPF, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000388824300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2911  
Permanent link to this record
 

 
Author BABAR Collaboration (Lees, J.P. et al); Martinez-Vidal, F.; Oyanguren, A. url  doi
openurl 
  Title Measurement of the B-0 -> D*(-)pi(+)pi(-)pi(+) branching fraction Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 94 Issue 9 Pages (down) 091101 - 7pp  
  Keywords  
  Abstract Using a sample of (470.9 +/- 2.8) x 10(6) B (B) over bar pairs, we measure the decay branching fraction B(B-0 -> D*(-)pi(+)pi(-)pi(-)) = (7.26 +/- 0.11 +/- 0.31) x 10(-3), where the first uncertainty is statistical and the second is systematic. Our measurement will be helpful in studies of lepton universality by measuring B(B-0 -> D*(-)tau(+)nu(tau)) using tau(+) -> pi(+)pi(-)pi(+)(nu) over bar (tau) decays, normalized to B(B-0 -> D*(-)pi(+)pi(-)pi(-)).  
  Address [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, Lab Annecy le Vieux Phys Particules LAP, CNRS IN2P3, F-74941 Annecy Le Vieux, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387905300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2861  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Calvo Diaz-Aldagalan, D.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Olcina, I.; Real, D.; Sanchez Garcia, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Letter of intent for KM3NeT 2.0 Type Journal Article
  Year 2016 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 43 Issue 8 Pages (down) 084001 - 130pp  
  Keywords neutrino astronomy; neutrino physics; deep sea neutrino telescope; neutrino mass hierarchy  
  Abstract The main objectives of the KM3NeT Collaboration are (i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and (ii) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: (1) the high-energy astrophysical neutrino signal reported by IceCube and (2) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure consisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the synergistic opportunities for the Earth and sea sciences community. Three suitable deep-sea sites are selected, namely off-shore Toulon (France), Capo Passero (Sicily, Italy) and Pylos (Peloponnese, Greece). The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a three-dimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be sparsely configured to fully explore the IceCube signal with similar instrumented volume, different methodology, improved resolution and complementary field of view, including the galactic plane. One building block will be densely configured to precisely measure atmospheric neutrino oscillations.  
  Address [Adrian-Martinez, S.; Ardid, M.; Llorens Alvarez, C. D.; Martinez-Mora, J. A.; Saldana, M.] Univ Politecn Valencia, Inst Invest Gest Integrada Zonas Costeras, C Paranimf 1, E-46730 Gandia, Spain, Email: brunner@cppm.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000381686700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2773  
Permanent link to this record
 

 
Author Di Valentino, E.; Giusarma, E.; Mena, O.; Melchiorri, A.; Silk, J. url  doi
openurl 
  Title Cosmological limits on neutrino unknowns versus low redshift priors Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 8 Pages (down) 083527 - 11pp  
  Keywords  
  Abstract Recent cosmic microwave background (CMB) temperature and polarization anisotropy measurements from the Planck mission have significantly improved previous constraints on the neutrino masses as well as the bounds on extended models with massless or massive sterile neutrino states. However, due to parameter degeneracies, additional low redshift priors are mandatory in order to sharpen the CMB neutrino bounds. We explore here the role of different priors on low redshift quantities, such as the Hubble constant, the cluster mass bias, and the reionization optical depth tau. Concerning current priors on the Hubble constant and the cluster mass bias, the bounds on the neutrino parameters may differ appreciably depending on the choices adopted in the analyses. With regard to future improvements in the priors on the reionization optical depth, a value of tau = 0.05 +/- 0.01, motivated by astrophysical estimates of the reionization redshift, would lead to Sigma m(nu) < 0.0926 eV at 90% C.L., when combining the full Planck measurements, baryon acoustic oscillation, and Planck clusters data, thereby opening the window to unravel the neutrino mass hierarchy with existing cosmological probes.  
  Address [Di Valentino, Eleonora; Silk, Joseph] CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000375203600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2643  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva