Siciliano, M. et al, Gadea, A., & Perez-Vidal, R. M. (2021). Lifetime measurements in the even-even Cd102-108 isotopes. Phys. Rev. C, 104(3), 034320–16pp.
Abstract: Background: The heaviest T-z = 0 doubly-magic nucleus, Sn-100, and the neighboring nuclei offer unique opportunities to investigate the properties of nuclear interaction. For instance, the structure of light-Sn nuclei has been shown to be affected by the delicate balance between nuclear-interaction components, such as pairing and quadrupole correlations. From Cd to Te, many common features and phenomena have been observed experimentally along the isotopic chains, leading to theoretical studies devoted to a more general and comprehensive study of the region. In this context, having only two proton holes in the Z = 50 shell, the Cd isotopes are expected to present properties similar to those found in the Sn isotopic chain. Purpose: The aim of this work was to measure lifetimes of excited states in neutron-deficient nuclei in the vicinity of Sn-100. Methods: The neutron-deficient nuclei in the N approximate to Z approximate to 50 region were populated using a multinucleon transfer reaction with a Cd-106 beam and a Mo-92 target. The beamlike products were identified by the VAMOS++ spectrometer, while the gamma rays were detected using the AGATA array. Lifetimes of excited states were determined using the recoil distance Doppler-shift method, employing the Cologne differential plunger. Results: Lifetimes of low-lying states were measured in the even-mass Cd-102-(108) isotopes. In particular, multiple states with excitation energy up to MeV, belonging to various bands, were populated in approximate to 3 Cd-106 via inelastic scattering. The transition strengths corresponding to the measured lifetimes were compared with those resulting from state-of-the-art beyond-mean-field calculations using the symmetry-conserving configuration-mixing approach. Conclusions: Despite the similarities in the electromagnetic properties of the low-lying states, there is a fundamental structural difference between the ground-state bands in the Z = 48 and Z = 50 isotopes. The comparison between experimental and theoretical results revealed a rotational character of the Cd nuclei, which have prolate-deformed ground states with beta(2) approximate to 0.2. At this deformation Z = 48 becomes a closed-shell configuration, which is favored with respect to the spherical one.
|
Broda, R. et al, & Gadea, A. (2010). Proton-hole states in the N=30 neutron-rich isotope K-49. Phys. Rev. C, 82(3), 034319–7pp.
Abstract: Excited states in the N = 30 neutron-rich isotope K-49 have been studied using multinucleon transfer reactions with thin targets and the PRISMA-CLARA spectrometer combined with thick-target gamma-coincidence data from Gammasphere. The d(3/2) proton-hole state is located 92 keV above the s(1/2) ground state, and the proton-particle f(7/2) state is suggested at 2104 keV. Three other levels are established as involving the coupling to 2(+) of two neutrons above the N = 28 shell. The measured or estimated lifetimes served to reinforce the interpretation of the observed level structure, which is found to be in satisfactory agreement with shell-model calculations.
|
Gottardo, A. et al, Gadea, A., & Algora, A. (2014). Isomeric decay spectroscopy of the Bi-217 isotope. Phys. Rev. C, 90(3), 034317–6pp.
Abstract: The structure of the neutron-rich bismuth isotope Bi-217 has been studied for the first time. The fragmentation of a primary U-238 beam at the FRS-RISING setup at GSI was exploited to perform gamma-decay spectroscopy, since μs isomeric states were expected in this nucleus. Gamma rays following the decay of a t(1/2) = 3 μs isomer were observed, allowing one to establish the low-lying structure of Bi-217. The level energies and the reduced electric quadrupole transition probability B(E2) from the isomeric state are compared to large-scale shell-model calculations.
|
Vandone, V. et al, Gadea, A., & Huyuk, T. (2013). Global properties of K hindrance probed by the gamma decay of the warm rotating W-174 nucleus. Phys. Rev. C, 88(3), 034312–9pp.
Abstract: The K hindrance to the gamma decay is studied in the warm rotating W-174 nucleus, focusing on the weakening of the selection rules of the K quantum number with increasing excitation energy. W-174 was populated by the fusion reaction of Ti-50 (at 217 MeV) on a Te-128 target, and its gamma decay was detected by the AGATA Demonstrator array coupled to a BaF2 multiplicity filter at Laboratori Nazionali di Legnaro of INFN. A fluctuation analysis of gamma coincidence matrices gives a similar number of low-K and high-K discrete excited bands. The results are compared to simulations of the gamma-decay flow based on a microscopic cranked shell model at finite temperature in which the K mixing is governed by the interplay of Coriolis force with the residual interaction. Agreement between simulations and experiment is obtained only by hindering the E1 decay between low-K and high-K bands by an amount compatible with that determined by spectroscopic studies of K isomers in the same mass region, with a similar trend with excitation energy. The work indicates that K mixing due to temperature effects may play a leading role for the entire body of discrete excited bands, which probes the onset region of K weakening.
|
Soderstrom, P. A. et al, Algora, A., & Gadea, A. (2010). Spectroscopy of neutron-rich Dy-168,Dy-170: Yrast band evolution close to the NpNn valence maximum. Phys. Rev. C, 81(3), 034310–5pp.
Abstract: The yrast sequence of the neutron-rich dysprosium isotope Dy-168 has been studied using multinucleon transfer reactions following collisions between a 460-MeV Se-82 beam and an Er-170 target. The reaction products were identified using the PRISMA magnetic spectrometer and the gamma rays detected using the CLARA HPGe-detector array. The 2(+) and 4(+) members of the previously measured ground-state rotational band of Dy-168 have been confirmed and the yrast band extended up to 10(+). A tentative candidate for the 4(+) -> 2(+) transition in Dy-170 was also identified. The data on these nuclei and on the lighter even-even dysprosium isotopes are interpreted in terms of total Routhian surface calculations and the evolution of collectivity in the vicinity of the proton-neutron valence product maximum is discussed.
|