|   | 
Details
   web
Records
Author Zhai, Y.J.; Giare, W.; van de Bruck, C.; Di Valentino, E.; Mena, O.; Nunes, R.C.
Title A consistent view of interacting dark energy from multiple CMB probes Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages (up) 032 - 16pp
Keywords cosmological parameters from CMBR; dark energy theory
Abstract We analyze a cosmological model featuring an interaction between dark energy and dark matter in light of the measurements of the Cosmic Microwave Background released by three independent experiments: the most recent data by the Planck satellite and the Atacama Cosmology Telescope, and WMAP (9-year data). We show that different combinations of the datasets provide similar results, always favoring an interacting dark sector with a 95% C.L. significance in the majority of the cases. Remarkably, such a preference remains consistent when cross-checked through independent probes, while always yielding a value of the expansion rate H0 consistent with the local distance ladder measurements. We investigate the source of this preference by scrutinizing the angular power spectra of temperature and polarization anisotropies as measured by different experiments.
Address [Zhai, Yuejia; Giare, William; van de Bruck, Carsten; Di Valentino, Eleonora] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, England, Email: yzhai13@sheffield.ac.uk;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001066525900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5673
Permanent link to this record
 

 
Author Escudero, M.; Mena, O.; Vincent, A.C.; Wilkinson, R.J.; Boehm, C.
Title Exploring dark matter microphysics with galaxy surveys Type Journal Article
Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 09 Issue 9 Pages (up) 034 - 16pp
Keywords dark matter theory; galaxy surveys; cosmological parameters from CMBR
Abstract We use present cosmological observations and forecasts of future experiments to illustrate the power of large-scale structure (LSS) surveys in probing dark matter (DM) microphysics and unveiling potential deviations from the standard ACDM scenario. To quantify this statement, we focus on an extension of ACDM with DM-neutrino scattering, which leaves a distinctive imprint on the angular and matter power spectra. After finding that future CMB experiments (such as COrE+) will not significantly improve the constraints set by the Planck satellite, we show that the next generation of galaxy clustering surveys (such as DESI) could play a leading role in constraining alternative cosmologies and even have the potential to make a discovery. Typically we find that DESI would be an order of magnitude more sensitive to DM interactions than Planck, thus probing effects that until now have only been accessible via N-body simulations.
Address [Escudero, Miguel; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: miguel.Escudero@uv.s;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000365690000034 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2480
Permanent link to this record
 

 
Author ANTARES, IceCube, Pierre Auger, LIGO Sci and VIRGO Collaborations (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory Type Journal Article
Year 2017 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 850 Issue 2 Pages (up) L35 - 18pp
Keywords gamma-ray burst: general; gravitational waves; neutrinos
Abstract The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV-EeV energy range using the ANTARES, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within +/- 500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle.
Address [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, GRPHE, Inst Univ Technol Colmar, 34 Rue Grillenbreit BP, F-505686800 Colmar, France
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000417541800010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3421
Permanent link to this record
 

 
Author Tain, J.L.; Algora, A.; Agramunt, J.; Guadilla, V.; Jordan, M.D.; Montaner-Piza, A.; Rubio, B.; Valencia, E.; Cano-Ott, D.; Gelletly, W.; Martinez, T.; Mendoza, E.; Podolyak, Z.; Regan, P.; Simpson, J.; Smith, A.J.; Strachan, J.
Title A decay total absorption spectrometer for DESPEC at FAIR Type Journal Article
Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 803 Issue Pages (up) 36-46
Keywords Total absorption gamma-ray spectrometer; Scintillation detectors; Beta decay; High-energy beam fragmentation facilities
Abstract This paper presents the design of a total absorption gamma-ray spectrometer for the determination of beta-decay intensity distributions of exotic nuclear species at the focal plane of the FAIR-NUSTAR Super Fragment Separator. The spectrometer is a key instrument in the DESPEC experiment and the proposed implementation follows extensive design studies and prototype tests. Two options were contemplated, based on Nal(TI) and LaBr3:Ce inorganic scintillation crystals respectively. Monte Carlo simulations and technical considerations determined the optimal configurations consisting of sixteen 15 x 15 x 25 cm(3) crystals for the Nal(Tl) option and one hundred and twenty-eight 5.5 x 5.5 x 11 cm(3) crystals for the LaBr3:Ce option. Minimization of dead material was crucial for maximizing the spectrometer full-energy peak efficiency. Module prototypes were build to verify constructional details and characterize their performance. The measured energy and timing resolution was found to agree rather well with estimates based on simulations of scintillation light transport and collection. The neutron sensitivity of the spectrometer, important when measuring beta-delayed neutron emitters, was investigated by means of Monte Carlo simulations.
Address [Tain, J. L.; Algora, A.; Agramunt, J.; Guadilla, V.; Jordan, M. D.; Montaner-Piza, A.; Rubio, B.; Valencia, E.] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: tain@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000363464600007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2431
Permanent link to this record
 

 
Author Doncel, M.; Cederwall, B.; Gadea, A.; Gerl, J.; Kojouharov, I.; Martin, S.; Palit, R.; Quintana, B.
Title Performance and imaging capabilities of the DEGAS high-resolution gamma-ray detector array for the DESPEC experiment at FAIR Type Journal Article
Year 2017 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 873 Issue Pages (up) 36-38
Keywords Gamma spectroscopy; Imaging; Position-sensitive Ge detectors
Abstract Monte Carlo simulations of one of the possible configurations of the imaging phase for the DEGAS spectrometer situated at the DESPEC/NUSTAR experiment have been performed. The geometry consists of the coupling of the high-resolution gamma spectroscopy array, AGATA, with a high-resolution segmented planar detector utilized as an implantation detector in a compact configuration. The sensitivity and performance of the array in terms of efficiency and imaging capability is deduced.
Address [Doncel, M.] Univ Liverpool, Dept Phys, Oliver Lodge Lab, Liverpool, Merseyside, England, Email: doncel@liverpool.ac.uk
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000413823100008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3349
Permanent link to this record