Lattanzi, M., Riemer-Sorensen, S., Tortola, M., & Valle, J. W. F. (2013). Updated CMB and x- and gamma-ray constraints on Majoron dark matter. Phys. Rev. D, 88(6), 063528–8pp.
Abstract: The Majoron provides an attractive dark matter candidate, directly associated with the mechanism responsible for spontaneous neutrino mass generation within the standard model SU(3)(c) circle times SU(2)(L) circle times U(1)(Y) framework. Here we update the cosmological and astrophysical constraints on Majoron dark matter coming from the cosmic microwave background and a variety of x- and gamma-ray observations.
|
Kosmas, T. S., Papoulias, D. K., Tortola, M., & Valle, J. W. F. (2017). Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments. Phys. Rev. D, 96(6), 063013–12pp.
Abstract: We investigate the impact of a fourth sterile neutrino at reactor and Spallation Neutron Source neutrino detectors. Specifically, we explore the discovery potential of the TEXONO and COHERENT experiments to subleading sterile neutrino effects through the measurement of the coherent elastic neutrino-nucleus scattering event rate. Our dedicated chi(2)-sensitivity analysis employs realistic nuclear structure calculations adequate for high purity sub-keV threshold Germanium detectors.
|
Schwetz, T., Tortola, M., & Valle, J. W. F. (2011). Global neutrino data and recent reactor fluxes: the status of three-flavour oscillation parameters. New J. Phys., 13, 063004–15pp.
Abstract: We present the results of a global neutrino oscillation data analysis within the three-flavour framework. We include the latest results from the MINOS long-baseline experiment (including electron neutrino appearance and anti-neutrino data), updating all relevant solar (Super-Kamiokande (SK) II + III), atmospheric (SK I + II + III) and reactor (KamLAND) data. Furthermore, we include a recent re-calculation of the anti-neutrino fluxes emitted from nuclear reactors. These results have important consequences for the analysis of reactor experiments and in particular for the status of the mixing angle theta(13). In our recommended default analysis, we find from the global fit that the hint for nonzero theta(13) remains weak, at 1.8 sigma for both neutrino mass hierarchy schemes. However, we discuss in detail the dependence of these results on assumptions regarding the reactor neutrino analysis.
|
Esteban-Pretel, A., Tomas, R., & Valle, J. W. F. (2010). Interplay between collective effects and nonstandard interactions of supernova neutrinos. Phys. Rev. D, 81(6), 063003–16pp.
Abstract: We consider the effect of nonstandard neutrino interactions (NSI, for short) on the propagation of neutrinos through the supernova (SN) envelope within a three-neutrino framework and taking into account the presence of a neutrino background. We find that for given NSI parameters, with strength generically denoted by epsilon(ij), neutrino evolution exhibits a significant time dependence. For vertical bar epsilon(tau tau)vertical bar greater than or similar to 10(-3) the neutrino survival probability may become sensitive to the V-23 octant and the sign of epsilon(tau tau). In particular, if epsilon(tau tau) greater than or similar to 10(-2) an internal I-resonance may arise independently of the matter density. For typical values found in SN simulations this takes place in the same dense-neutrino region above the neutrinosphere where collective effects occur, in particular, during the synchronization regime. This resonance may lead to an exchange of the neutrino fluxes entering the bipolar regime. The main consequences are (i) bipolar conversion taking place for normal neutrino mass hierarchy and (ii) a transformation of the flux of low-energy v(e), instead of the usual spectral swap.
|
Miranda, O. G., Tortola, M., & Valle, J. W. F. (2016). New Ambiguity in Probing CP Violation in Neutrino Oscillations. Phys. Rev. Lett., 117(6), 061804–5pp.
Abstract: If neutrinos get mass via the seesaw mechanism the mixing matrix describing neutrino oscillations can be effectively nonunitary. We show that in this case the neutrino appearance probabilities involve a new CP phase phi associated with nonunitarity. This leads to an ambiguity in extracting the “standard” three-neutrino phase delta(CP), which can survive even after neutrino and antineutrino channels are combined. Its existence should be taken into account in the planning of any oscillation experiment aiming at a robust measurement of delta(CP).
|
Dorame, L., Morisi, S., Peinado, E., Valle, J. W. F., & Rojas, A. D. (2012). New neutrino mass sum rule from the inverse seesaw mechanism. Phys. Rev. D, 86(5), 056001–9pp.
Abstract: A class of discrete flavor-symmetry-based models predicts constrained neutrino mass matrix schemes that lead to specific neutrino mass sum rules. One of these implies a lower bound on the effective neutrinoless double beta mass parameter, even for normal hierarchy neutrinos. Here we propose a new model based on the S-4 flavor symmetry that leads to the new neutrino mass sum rule and discuss how to generate a nonzero value for the reactor angle theta(13) indicated by recent experiments, and the resulting correlation with the solar angle theta(12).
|
Dong, P. V., Huong, D. T., Camargo, D. A., Queiroz, F. S., & Valle, J. W. F. (2019). Asymmetric dark matter, inflation, and leptogenesis from B-L symmetry breaking. Phys. Rev. D, 99(5), 055040–17pp.
Abstract: We propose a unified setup for dark matter, inflation, and baryon asymmetry generation through the neutrino mass seesaw mechanism. Our scenario emerges naturally from an extended gauge group containing B-L as a noncommutative symmetry, broken by a singlet scalar that also drives inflation. Its decays reheat the universe, producing the lightest right-handed neutrino. Automatic matter parity conservation leads to the stability of an asymmetric dark matter candidate, directly linked to the matter-antimatter asymmetry in the Universe.
|
de Anda, F. J., Medina, O., Valle, J. W. F., & Vaquera-Araujo, C. A. (2022). Scotogenic Majorana neutrino masses in a predictive orbifold theory of flavor. Phys. Rev. D, 105(5), 055030–12pp.
Abstract: The use of extra space-time dimensions provides a promising approach to the flavor problem. The chosen compactification of a 6-dimensional orbifold implies a remnant family symmetry A4. This makes interesting predictions for quark and lepton masses, for neutrino oscillations and neutrinoless double beta decay, providing also a very good global description of all flavor observables. Due to an auxiliary Z4 symmetry, we implement a scotogenic Majorana neutrino mass generation mechanism with a viable WIMP dark matter candidate.
|
Boucenna, M. S., Morisi, S., Shafi, Q., & Valle, J. W. F. (2014). Inflation and majoron dark matter in the neutrino seesaw mechanism. Phys. Rev. D, 90(5), 055023–6pp.
Abstract: We propose that inflation and dark matter have a common origin, connected to the neutrino mass generation scheme. As a model we consider spontaneous breaking of global lepton number within the seesaw mechanism. We show that it provides an acceptable inflationary scenario consistent with the recent cosmic microwave background B-mode observation by the BICEP2 experiment. The scheme may also account for the baryon asymmetry of the Universe through leptogenesis for reasonable parameter choices.
|
Chen, P., Centelles Chulia, S., Ding, G. J., Srivastava, R., & Valle, J. W. F. (2018). Realistic tribimaximal neutrino mixing. Phys. Rev. D, 98(5), 055019–6pp.
Abstract: We propose a generalized version of the tribimaximal (TBM) ansatz for lepton mixing, leading to a nonzero reactor angle theta(13) and CP violation. The latter is characterized by two CP phases. The Dirac phase, affecting neutrino oscillations, is nearly maximal (delta(CP) similar to +/- pi/2), while the Majorana phase implies narrow allowed ranges for the neutrinoless double beta decay amplitude. The solar angle theta(12) lies nearly at its TBM value, while the atmospheric angle theta(23) has the TBM value for a maximal delta(CP). Neutrino oscillation predictions can be tested in present and upcoming experiments.
|