|   | 
Details
   web
Records
Author Easa, H.; Gregoire, T.; Stolarski, D.; Cosme, C.
Title Baryogenesis and dark matter in multiple hidden sectors Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 7 Pages (up) 075003 - 29pp
Keywords
Abstract We explore a mechanism for producing the baryon asymmetry and dark matter in models with multiple hidden sectors that are Standard -Model -like but with varying Higgs mass parameters. If the field responsible for reheating the Standard Model and the exotic sectors carries an asymmetry, it can be converted into a baryon asymmetry using the standard sphaleron process. A hidden sector with positive Higgs mass squared can accommodate dark matter with its baryon asymmetry, and the larger abundance of dark matter relative to baryons is due to dark sphalerons being active all the way down the hidden sector QCD scale. This scenario predicts that dark matter is clustered in large dark nuclei and gives a lower bound on the effective relativistic degrees of freedom, Delta N eff greater than or similar to 0 .05 , which may be observable in the nextgeneration cosmic microwave background experiment CMB-S4.
Address [Easa, Hassan; Gregoire, Thomas; Stolarski, Daniel; Cosme, Catarina] Carleton Univ, Ottawa Carleton Inst Phys, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada, Email: Hassaneasa@cmail.carleton.ca;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001224349300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6129
Permanent link to this record
 

 
Author Bayar, M.; Molina, R.; Oset, E.; Liu, M.Z.; Geng, L.S.
Title Subtleties in triangle loops for Ds+ → ρ+ η → π+ π0 η in a0(980) production Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 7 Pages (up) 076027 - 7pp
Keywords
Abstract We address a general problem in the evaluation of triangle loops stemming from the consideration of the range of the interaction involved in some of the vertices, as well as the energy dependence of the width of some unstable particles in the loop. We find sizeable corrections from both effects. We apply that to a loop relevant to the D + s -> pi + pi 0 eta decay, and find reductions of about a factor of 4 in the mass distribution of invariant mass of the pi eta in the region of the a 0 ( 980 ) . The method used is based on the explicit analytical evaluation of the q 0 integration in the d 4 q loop integration, using Cauchy 's residues method, which at the same time offers an insight on the convergence of the integrals and the effect of form factors and cutoffs.
Address [Bayar, M.] Kocaeli Univ, Dept Phys, TR-41380 Izmit, Turkiye, Email: melahat.bayar@kocaeli.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001236271000017 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6211
Permanent link to this record
 

 
Author Barral, D.; Isoard, M.; Sorelli, G.; Gessner, M.; Treps, N.; Walschaers, M.
Title Metrological detection of entanglement generated by non-Gaussian operations Type Journal Article
Year 2024 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 26 Issue 8 Pages (up) 083012 - 20pp
Keywords entanglement; Fisher information; non-Gaussian; continuous variables; metrology; homodyne detection
Abstract Entanglement and non-Gaussianity are physical resources that are essential for a large number of quantum-optics protocols. Non-Gaussian entanglement is indispensable for quantum-computing advantage and outperforms its Gaussian counterparts in a number of quantum-information protocols. The characterization of non-Gaussian entanglement is a critical matter as it is in general highly demanding in terms of resources. We propose a simple protocol based on the Fisher information for witnessing entanglement in an important class of non-Gaussian entangled states: photon-subtracted states. We demonstrate that our protocol is relevant for the detection of non-Gaussian entanglement generated by multiple photon-subtraction and that it is experimentally feasible through homodyne detection.
Address [Barral, David; Isoard, Mathieu; Sorelli, Giacomo; Treps, Nicolas; Walschaers, Mattia] Sorbonne Univ, ENS Univ PSL, CNRS, Lab Kastler Brossel,Coll France, 4 Pl Jussieu, F-75252 Paris, France, Email: david.barral@lkb.ens.fr;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:001288948500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6228
Permanent link to this record
 

 
Author Wang, D.; Mena, O.
Title Robust analysis of the growth of structure Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 8 Pages (up) 083539 - 18pp
Keywords
Abstract Current cosmological tensions show that it is crucial to test the predictions from the canonical ACDM paradigm at different cosmic times. One very appealing test of structure formation in the Universe is the growth rate of structure in our universe f, usually parametrized via the growth index gamma, with f equivalent to Omega(m)(a)gamma and gamma similar or equal to 0.55 in the standard ACDM case. Recent studies have claimed a suppression of the growth of structure from a variety of cosmological observations, characterized by gamma > 0.55. By employing different self-consistent growth parametrizations schemes, we show here that gamma < 0.55, obtaining instead an enhanced growth of structure today. This preference reaches the 3 sigma significance using cosmic microwave background observations, supernova Ia and baryon acoustic oscillation measurements. The addition of cosmic microwave background lensing data relaxes such a preference to the 2 sigma level, since a larger lensing effect can always be compensated with a smaller structure growth, or, equivalently, with gamma > 0.55. We have also included the lensing amplitude AL as a free parameter in our data analysis, showing that the preference for AL > 1 still remains, except for some particular parametrizations when lensing observations are included. We also do not find any significant preference for an oscillatory dependence of AL, AL + Am sin l. To further reassess the effects of a nonstandard growth, we have computed by means of N-body simulations the dark matter density fields, the dark matter halo mass functions and the halo density profiles for different values of gamma. Future observations from the Square Kilometer Array, reducing by a factor of 3 the current errors on the gamma parameter, further confirm or refute with a strong statistical significance the deviation of the growth index from its standard value.
Address [Wang, Deng; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Paterna, Spain, Email: dengwang@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001224750700005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6130
Permanent link to this record
 

 
Author Super-Kamiokande Collaboration (Abe, K. et al); Molina Sedgwick, S.
Title Solar neutrino measurements using the full data period of Super-Kamiokande-IV Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 9 Pages (up) 092001 - 44pp
Keywords
Abstract An analysis of solar neutrino data from the fourth phase of Super-Kamiokande (SK-IV) from October 2008 to May 2018 is performed and the results are presented. The observation time of the dataset of SK- IV corresponds to 2970 days and the total live time for all four phases is 5805 days. For more precise solar neutrino measurements, several improvements are applied in this analysis: lowering the data acquisition threshold in May 2015, further reduction of the spallation background using neutron clustering events, precise energy reconstruction considering the time variation of the PMT gain. The observed number of solar neutrino events in 3.49-19.49 MeV electron kinetic energy region during SK-IV is 65, 443(-388)(+390) (stat.) +/- 925(syst.) events. Corresponding B-8 solar neutrino flux is (2.314 +/- 0.014(stat.) +/- 0.040(syst.)) x 106 cm(-2) s(-1), assuming a pure electron-neutrino flavor component without neutrino oscillations. The flux combined with all SK phases up to SK-IV is (2.336 +/- 0.011(stat.) +/- 0.043(syst.)) x 106 cm(-2) s(-1). Based on the neutrino oscillation analysis from all solar experiments, including the SK 5805 days dataset, the best-fit neutrino oscillation parameters are sin(2)theta(12,solar) = 0.306 +/- 0.013 and Delta m(21,solar)(2) = (6.10(-0.81)(+0.95)) x 10(-5) eV(2), with a deviation of about 1.5 sigma from the Delta m(21)(2) parameter obtained by KamLAND. The best-fit neutrino oscillation parameters obtained from all solar experiments and KamLAND are sin(2)theta(12, global) = 0.307 +/- 0.012 and Delta m(21,) (2)(global) = (7.50(-0.18)(+0.19)) x 10(-5) eV(2).
Address [Abe, K.; Bronner, C.; Hayato, Y.; Hiraide, K.; Hosokawa, K.; Ieki, K.; Ikeda, M.; Imaizumi, S.; Iyogi, K.; Kameda, J.; Kanemura, Y.; Kaneshima, R.; Kashiwagi, Y.; Kataoka, Y.; Kato, Y.; Kishimoto, Y.; Miki, S.; Mine, S.; Miura, M.; Mochizuki, T.; Moriyama, S.; Nagao, Y.; Nakahata, M.; Nakano, Y.; Nakayama, S.; Noguchi, Y.; Okada, T.; Okamoto, K.; Orii, A.; Sato, K.; Sekiya, H.; Shiba, H.; Shimizu, K.; Shiozawa, M.; Sonoda, Y.; Suzuki, Y.; Takeda, A.; Takemoto, Y.; Takenaka, A.; Tanaka, H.; Watanabe, S.; Yano, T.] Univ Tokyo, Kamioka Observ, Inst Cosm Ray Res, Kamioka, Gifu 5061205, Japan
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001261161700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6210
Permanent link to this record
 

 
Author Roca, L.; Song, J.; Oset, E.
Title Molecular pentaquarks with hidden charm and double strangeness Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 9 Pages (up) 094005 - 8pp
Keywords
Abstract We analyze theoretically the coupled-channel meson-baryon interaction with global flavor c<overline>cssn and c<overline>csss, where mesons are pseudoscalars or vectors, and baryons have JP = 1/2+ or 3/2+. The aim is to explore whether the nonlinear dynamics inherent in the unitarization process within coupled channels can dynamically generate double- and triple-strange pentaquark-type states (Pcss and Pcsss, respectively), for which there is no experimental evidence to date. We evaluate the s-wave scattering matrix by implementing unitarity in coupled channels, using potential kernels obtained from t-channel vector meson exchange. The required PPV and VVV vertices are obtained from Lagrangians derived through appropriate extensions of the local hidden gauge symmetry approach to the charm sector, while capitalizing on the symmetry of the spin and flavor wave function to evaluate the BBV vertex. We find four different poles in the double strange sector, some of them degenerate in spin. For the triple-strange channel, we find the meson-baryon interaction insufficient to generate a bound or resonance state through the unitary coupled-channel dynamics.
Address [Roca, L.] Univ Murcia, Dept Fis, E-30100 Murcia, Spain, Email: luisroca@um.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001224715500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6135
Permanent link to this record
 

 
Author Figueroa, D.G.; Florio, A.; Torrenti, F.
Title Present and future of Cosmo Lattice Type Journal Article
Year 2024 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.
Volume 87 Issue 9 Pages (up) 094901 - 20pp
Keywords early Universe; non-linear dynamics; real-time lattice simulations; cosmology; gauge-invariant lattice techniques; CosmoLattice; gravitational waves
Abstract We discuss the present state and planned updates of Cosmo Lattice, a cutting-edge code for lattice simulations of non-linear dynamics of scalar-gauge field theories in an expanding background. We first review the current capabilities of the code, including the simulation of interacting singlet scalars and of Abelian and non-Abelian scalar-gauge theories. We also comment on new features recently implemented, such as the simulation of gravitational waves from scalar and gauge fields. Secondly, we discuss new extensions of C osmo L attice that we plan to release publicly. We comment on new physics modules, which include axion-gauge interactions phi FF , non-minimal gravitational couplings phi R-2 , creation and evolution of cosmic-defect networks, and magnetohydrodynamics. We also discuss new technical features, including evolvers for non-canonical interactions, arbitrary initial conditions, simulations in 2+1 dimensions, and higher-accuracy spatial derivatives.
Address [Figueroa, Daniel G.; Torrenti, Francisco] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: daniel.figueroa@ific.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4885 ISBN Medium
Area Expedition Conference
Notes WOS:001284570700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6219
Permanent link to this record
 

 
Author Rossi, R.R.; Sanchez Garcia, G.; Tortola, M.
Title Probing nuclear properties and neutrino physics with current and future CEνNS experiments Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 9 Pages (up) 095044 - 17pp
Keywords
Abstract The recent observation of coherent elastic neutrino-nucleus scattering (CEvNS) with neutrinos from pion decay at rest (N-DAR) sources by the COHERENT Collaboration has raised interest in this process in the search for new physics. Unfortunately, current uncertainties in the determination of nuclear parameters relevant to those processes can hide new physics effects. This is not the case for processes involving lower-energy neutrino sources such as nuclear reactors. Note, however, that a CEvNS measurement with reactor neutrinos depends largely on a (still-missing) precise determination of the quenching factor at very low energies, making its observation more challenging. In the upcoming years, once this signal is confirmed, a combined analysis of N-DAR and reactor CEvNS experiments will be very useful to probe particle and nuclear physics, with a reduced dependence on nuclear uncertainties. In this work, we explore this idea by simultaneously testing the sensitivity of current and future CEvNS experiments to neutrino nonstandard interactions (NSIs) and the neutron root mean square (rms) radius, considering different neutrino sources as well as several detection materials. We show how the interplay between future reactor and accelerator CEvNS experiments can help to get robust constraints on the neutron rms and to break degeneracies between the NSI parameters. Our forecast could be used as a guide to optimize the experimental sensitivity to the parameters under study.
Address [Rossi, R. R.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: gsanchez@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001238451900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6149
Permanent link to this record
 

 
Author Gil-Dominguez, F.; Molina, R.
Title Quark mass dependence of the D*s0 (2317) and D s1 (2460) resonances Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 9 Pages (up) 096002 - 17pp
Keywords
Abstract We determine the quark mass dependence-light and heavy-of the D*s0(2317) and Ds1(2460) properties, such as, mass, coupling to D(*)K, scattering lengths and compositeness, from a global analysis I = 0 for different boosts and two pion masses. The formalism is based in the local hidden-gauge interaction of Weinberg-Tomozawa type which respects both chiral and heavy quark spin symmetries, supplemented by a term that takes into account the D(*)K coupling to a bare cs<overline> component. The isospin violating decay of the D*s0(2317) -> D+s pi 0 is also evaluated.
Address [Gil-Dominguez, F.; Molina, R.] Ctr Mixto Univ Valencia, Dept Fis Teor, CSIC, Parc Cientif UV,C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: fernando.gil@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001224715500005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6134
Permanent link to this record
 

 
Author Araujo Filho, A.A.; Jusufi, K.; Cuadros-Melgar, B.; Leon, G.
Title Dark matter signatures of black holes with Yukawa potential Type Journal Article
Year 2024 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 44 Issue Pages (up) 101500 - 20pp
Keywords Quantum-corrected Yukawa-like gravitational potential; Dark matter; Quasinormal frequencies; Black Holes shadows
Abstract This study uses a nonsingular Yukawa-modified potential to obtain a static and spherically symmetric black hole solution with a cosmological constant. Such Yukawa-like corrections are encoded in two parameters, alpha and lambda, that modify Newton's law of gravity in large distances, and a deformation parameter l(0), which plays an essential role in short distances. The most significant effect is encoded in alpha, which modifies the total black hole mass with an extra mass proportional to alpha M, mimicking the dark matter effects at large distances from the black hole. On the other hand, the effect due to lambda is small for astrophysical values. We scrutinize the quasinormal frequencies and shadows associated with a spherically symmetric black hole and the thermodynamical behavior influenced by the Yukawa potential. In particular, the thermodynamics of this black hole displays a rich behavior, including possible phase transitions. We use the WKB method to probe the quasinormal modes of massless scalar, electromagnetic, and gravitational field perturbations. In order to check the influence of the parameters on the shadow radius, we consider astrophysical data to determine their values, incorporating information on an optically thin radiating and infalling gas surrounding a black hole to model the black hole shadow image. In particular, we consider Sgr A* black hole as an example and we find that its shadow radius changes by order of 10(-9), meaning that the shadow radius of a black hole with Yukawa potential practically gives rise to the same result encountered in the Schwarzschild black hole. Also, in the eikonal regime, using astrophysical data for Yukawa parameters, we show that the value of the real part of the QNMs frequencies changes by 10(-18). Such Yukawa-like corrections are, therefore, difficult to measure by observations of gravitational waves using the current technology.
Address [Filhoa, A. A. Araujo] Univ Valencia, Ctr Mixto Univ Valencia, Dept Fis Teor, CSIC, Burjassot 46100, Valencia, Spain, Email: dilto@fisica.ufc.br;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001287415400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6226
Permanent link to this record