toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de Adelhart Toorop, R.; Bazzocchi, F.; Morisi, S. url  doi
openurl 
  Title Quark mixing in the discrete dark matter model Type Journal Article
  Year 2012 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B  
  Volume 856 Issue 3 Pages (up) 670-681  
  Keywords Discrete flavour symmetries; Dark matter; Meson oscillations  
  Abstract We consider a model in which dark matter is stable as it is charged under a Z(2) symmetry that is residual after an A(4) flavour symmetry is broken. We consider the possibility to generate the quark masses by charging the quarks appropriately under A(4). We find that it is possible to generate the CKM mixing matrix by an interplay of renormalisable and dimension-six operators. In this set-up, we predict the third neutrino mixing angle to be large and the dark matter relic density to be in the correct range. Low energy observables – in particular meson-antimeson oscillations – are hard to facilitate. We find that only in a situation where there is a strong cancellation between the Standard Model contribution and the contribution of the new Higgs fields, B meson oscillations are under control.  
  Address [Toorop, Reinier de Adelhart] Nikhef Theory Grp, NL-1098 XG Amsterdam, Netherlands, Email: reintoorop@nikhef.nl  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0550-3213 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000300028200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 891  
Permanent link to this record
 

 
Author Bernabeu, J. url  doi
openurl 
  Title Symmetries and Their Breaking in the Fundamental Laws of Physics Type Journal Article
  Year 2020 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 12 Issue 8 Pages (up) 1316 - 27pp  
  Keywords flavour families; colour charges; gauge symmetries; chirality; discrete symmetries; neutrinos; spontaneous breaking  
  Abstract Symmetries in the Physical Laws of Nature lead to observable effects. Beyond the regularities and conserved magnitudes, the last few decades in particle physics have seen the identification of symmetries, and their well-defined breaking, as the guiding principle for the elementary constituents of matter and their interactions. Flavour SU(3) symmetry of hadrons led to the Quark Model and the antisymmetric requirement under exchange of identical fermions led to the colour degree of freedom. Colour became the generating charge for flavour-independent strong interactions of quarks and gluons in the exact colour SU(3) local gauge symmetry. Parity Violation in weak interactions led us to consider the chiral fields of fermions as the objects with definite transformation properties under the weak isospin SU(2) gauge group of the Unifying Electro-Weak SU(2) x U(1) symmetry, which predicted novel weak neutral current interactions. CP-Violation led to three families of quarks opening the field of Flavour Physics. Time-reversal violation has recently been observed with entangled neutral mesons, compatible with CPT-invariance. The cancellation of gauge anomalies, which would invalidate the gauge symmetry of the quantum field theory, led to Quark-Lepton Symmetry. Neutrinos were postulated in order to save the conservation laws of energy and angular momentum in nuclear beta decay. After the ups and downs of their mass, neutrino oscillations were discovered in 1998, opening a new era about their origin of mass, mixing, discrete symmetries and the possibility of global lepton-number violation through Majorana mass terms and Leptogenesis as the source of the matter-antimatter asymmetry in the universe. The experimental discovery of quarks and leptons and the mediators of their interactions, with physical observables in spectacular agreement with this Standard Theory, is the triumph of Symmetries. The gauge symmetry is exact only when the particles are massless. One needs a subtle breaking of the symmetry, providing the origin of mass without affecting the excellent description of the interactions. This is the Brout-Englert-Higgs Mechanism, which produces the Higgs Boson as a remnant, discovered at CERN in 2012. Open present problems are addressed with by searching the New Physics Beyond-the-Standard-Model.  
  Address [Bernabeu, Jose] Univ Valencia, Dept Theoret Phys, E-46100 Burjassot, Spain, Email: Jose.Bernabeu@uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000564717500001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4523  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J. url  doi
openurl 
  Title Search for the rare decay B-0 -> J/psi phi Type Journal Article
  Year 2021 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 45 Issue 4 Pages (up) 043001 - 14pp  
  Keywords B physics; flavour physics; rare decay; omega – phi mixing; branching fraction  
  Abstract A search for the rare decay B-0 -> J/psi phi, is performed using pp collision data collected with the LHCb detector at centre-of-mass energies of 7, 8 and 13 TeV, corresponding to an integrated luminosity of 9 fb(-1). No significant signal of the decay is observed and an upper limit of 1.1 x 10(-7) at 90% confidence level is set on the branching fraction.  
  Address [Bediaga, I.; Cruz Torres, M.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; dos Reis, A. C.; Soares Lavra, L.; Tourinho Jadallah Aoude, R.] CBPF, Rio De Janeiro, Brazil, Email: maria.vieites.diaz@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000630745400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4751  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Observation of B-s(0) -> K* (+/-) K -/+ and evidence for B-s(0) -> K*(-) pi(+) decays Type Journal Article
  Year 2014 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 16 Issue Pages (up) 123001 - 18pp  
  Keywords flavour physics; B physics; branching fraction  
  Abstract Measurements of the branching fractions of B-s(0) -> K*K-+/-(-/+) and B-s(0) -> K*(+/-) pi(-/+) decays are performed using a data sample corresponding to 1.0 fb(-1) of protonproton collision data collected with the LHCb detector at a centre-of- mass energy of 7 TeV, where the K*(+/-) mesons are reconstructed in the K-s(0) pi(+/-) final state. The first observation of the B-s(0) -> K*(+/-) K--/+ decay and the first evidence for the B-s(0) -> K*(-) pi(+) decay are reported with branching fractions B(B-s(0) -> K*K-+/-(-/+)) = (12.7 +/- 1.9 +/- 1.9) x 10(-6) , B(B-s(0) -> K*(-) pi(+)) = (3.3 +/- 1.1 +/- 0.5) x 10(-6) , where the first uncertainties are statistical and the second are systematic. In addition, an upper limit of B(B-0 -> K*K-+/-(-/+)) < 0.4 (0.5) x 10(-6) is set at 90% (95%) confidence level.  
  Address [Amato, S.; Akiba, K. Carvalho; De Paula, L.; Francisco, O.; Gandelman, M.; Lopes, J. H.; Tostes, D. Martins; Otalora Goicochea, J. M.; Polycarpo, E.; Rangel, M. S.; Guimaraes, V. Salustino; De Paula, B. Souza; Szilard, D.; Vieira, D.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000346821400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2064  
Permanent link to this record
 

 
Author Lattanzi, M.; Lineros, R.A.; Taoso, M. url  doi
openurl 
  Title Connecting neutrino physics with dark matter Type Journal Article
  Year 2014 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 16 Issue Pages (up) 125012 - 19pp  
  Keywords neutrinos; dark matter; flavour; majoron; sterile neutrinos  
  Abstract The origin of neutrino masses and the nature of dark matter are two in most pressing open questions in modern astro-particle physics. We consider here the possibility that these two problems are related, and review some theoretical scenarios which offer common solutions. A simple possibility is that the dark matter particle emerges in minimal realizations of the seesaw mechanism, as in the majoron and sterile neutrino scenarios. We present the theoretical motivation for both models and discuss their phenomenology, confronting the predictions of these scenarios with cosmological and astrophysical observations. Finally, we discuss the possibility that the stability of dark matter originates from a flavor symmetry of the leptonic sector. We review a proposal based on an A(4) flavor symmetry.  
  Address [Lattanzi, Massimiliano] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy, Email: lattanzi@fe.infn.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000346823200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2062  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva