toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rinaldi, M.; Vento, V. url  doi
openurl 
  Title Scalar spectrum in a graviton soft wall model Type Journal Article
  Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 47 Issue 12 Pages (down) 125003 - 16pp  
  Keywords glueball; meson; spectrum; AdS; CFT  
  Abstract In this study we present a unified phenomenological analysis of the scalar glueball and scalar meson spectra within an AdS/QCD framework in the bottom up approach. For this purpose we generalize the recently developed graviton soft-wall (GSW) model, which has shown an excellent agreement with the lattice QCD glueball spectrum, to a description of glueballs and mesons with a unique energy scale. In this scheme, dilatonic effects, are incorporated in the metric as a deformation of the AdS space. We apply the model also to the heavy meson spectra with success. We obtain quadratic mass equations for all scalar mesons while the glueballs satisfy an almost linear mass equation. Besides their spectra, we also discuss the mixing of scalar glueball and light scalar meson states within a unified framework: the GSW model. To this aim, the light-front (LF) holographic approach, which connects the mode functions of AdS/QCD to the LF wave functions, is applied. This relation provides the probabilistic interpretation required to properly investigate the mixing conditions.  
  Address [Rinaldi, Matteo] Univ Perugia, INFN, Dipartimento Fis & Geol, Sez Perugia, Via A Pascoli, I-06123 Perugia, Italy, Email: matteo.rinaldi@pg.infn.it  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000584306700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4587  
Permanent link to this record
 

 
Author Ayala, C.; Gonzalez, P.; Vento, V. url  doi
openurl 
  Title Heavy quark potential from QCD-related effective coupling Type Journal Article
  Year 2016 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 43 Issue 12 Pages (down) 125002 - 12pp  
  Keywords general properties of QCD; potential models; other non-perturbative calculations; heavy quarkonia  
  Abstract We implement our past investigations of quark-antiquark interaction through a non-perturbative running coupling defined in terms of a gluon mass function, similar to that used in some Schwinger-Dyson approaches. This coupling leads to a quark-antiquark potential, which satisfies not only asymptotic freedom but also describes linear confinement correctly. From this potential, we calculate the bottomonium and charmonium spectra below the first open flavor meson-meson thresholds and show that for a small range of values of the free parameter determining the gluon mass function an excellent agreement with data is attained.  
  Address [Gonzalez, Pedro] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: Pedro.Gonzalez@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000388219700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2870  
Permanent link to this record
 

 
Author Agullo, I.; del Rio, A.; Navarro-Salas, J. url  doi
openurl 
  Title Classical and quantum aspects of electric-magnetic duality rotations in curved spacetimes Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 12 Pages (down) 125001 - 22pp  
  Keywords  
  Abstract It is well known that the source-free Maxwell equations are invariant under electric-magnetic duality rotations, F -> F cos theta +*F sin theta. These transformations are indeed a symmetry of the theory in the Noether sense. The associated constant of motion is the difference in the intensity between self-dual and anti-self-dual components of the electromagnetic field or, equivalently, the difference between the right and left circularly polarized components. This conservation law holds even if the electromagnetic field interacts with an arbitrary classical gravitational background. After reexamining these results, we discuss whether this symmetry is maintained when the electromagnetic field is quantized. The answer is in the affirmative in the absence of gravity but not necessarily otherwise. As a consequence, the net polarization of the quantum electromagnetic field fails to be conserved in curved spacetimes. This is a quantum effect, and it can be understood as the generalization of the fermion chiral anomaly to fields of spin one.  
  Address [Agullo, Ivan] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000451998400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3824  
Permanent link to this record
 

 
Author Marañon-Gonzalez, F.J.; Navarro-Salas, J. url  doi
openurl 
  Title Adiabatic regularization for spin-1 fields Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 12 Pages (down) 125001 - 11pp  
  Keywords  
  Abstract We analyze the adiabatic regularization scheme to renormalize Proca fields in a four-dimensional Friedmann-Lemaitre-Robertson-Walker spacetime. The adiabatic method is well established for scalar and spin-1/2 fields, but is not yet fully understood for spin-1 fields. We give the details of the construction and show that, in the massless limit, the renormalized stress-energy tensor of the Proca field is closely related to that of a minimally coupled scalar field. Our result is in full agreement with other approaches, based on the effective action, which also show a discontinuity in the massless limit. The scalar field can be naturally regarded as a Stueckelberg-type field. We also test the consistency of our results in de Sitter space.  
  Address [Maranon-Gonzalez, F. Javier; Navarro-Salas, Jose] Univ Valencia, Dept Fis Teor, CSIC, Burjassot 46100, Valencia, Spain, Email: jnavarro@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001121689900014 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5871  
Permanent link to this record
 

 
Author Alekhin, S. et al; Hernandez, P. url  doi
openurl 
  Title A facility to search for hidden particles at the CERN SPS: the SHiP physics case Type Journal Article
  Year 2016 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 79 Issue 12 Pages (down) 124201 - 137pp  
  Keywords beyond the standard model physics; intensity frontier experiment; hidden sectors; heavy neutral leptons; dark photons  
  Abstract This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, tau -> 3 μand to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals-scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.  
  Address [Alekhin, Sergey] DESY, Platanenallee 6, D-15738 Zeuthen, Germany, Email: oleg.ruchayskiy@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387025400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2852  
Permanent link to this record
 

 
Author Kasieczka, G. et al; Sanz, V. url  doi
openurl 
  Title The LHC Olympics 2020: a community challenge for anomaly detection in high energy physics Type Journal Article
  Year 2021 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 84 Issue 12 Pages (down) 124201 - 64pp  
  Keywords anomaly detection; machine learning; unsupervised learning; weakly supervised learning; semisupervised learning; beyond the standard model; model-agnostic methods  
  Abstract A new paradigm for data-driven, model-agnostic new physics searches at colliders is emerging, and aims to leverage recent breakthroughs in anomaly detection and machine learning. In order to develop and benchmark new anomaly detection methods within this framework, it is essential to have standard datasets. To this end, we have created the LHC Olympics 2020, a community challenge accompanied by a set of simulated collider events. Participants in these Olympics have developed their methods using an R&D dataset and then tested them on black boxes: datasets with an unknown anomaly (or not). Methods made use of modern machine learning tools and were based on unsupervised learning (autoencoders, generative adversarial networks, normalizing flows), weakly supervised learning, and semi-supervised learning. This paper will review the LHC Olympics 2020 challenge, including an overview of the competition, a description of methods deployed in the competition, lessons learned from the experience, and implications for data analyses with future datasets as well as future colliders.  
  Address [Kasieczka, Gregor] Univ Hamburg, Inst Expt Phys, Hamburg, Germany, Email: gregor.kasieczka@uni-hamburg.de;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000727698500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5039  
Permanent link to this record
 

 
Author Geng, L.S.; Molina, R.; Oset, E. url  doi
openurl 
  Title On the chiral covariant approach to rho rho scattering Type Journal Article
  Year 2017 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 41 Issue 12 Pages (down) 124101 - 9pp  
  Keywords rho-rho scattering; unitary chiral approaches; on-shell approximations  
  Abstract We examine in detail a recent work (D. Gulmez, U. G. Meibner and J. A. Oller, Eur. Phys. J. C, 77: 460 (2017)), where improvements to make rho rho scattering relativistically covariant are made. The paper has the remarkable conclusion that the J=2 state disappears with a potential which is much more attractive than for J=0, where a bound state is found. We trace this abnormal conclusion to the fact that an “on-shell” factorization of the potential is done in a region where this potential is singular and develops a large discontinuous and unphysical imaginary part. A method is developed, evaluating the loops with full rho propagators, and we show that they do not develop singularities and do not have an imaginary part below threshold. With this result for the loops we define an effective potential, which when used with the Bethe-Salpeter equation provides a state with J=2 around the energy of the f(2)(1270). In addition, the coupling of the state to is evaluated and we find that this coupling and the T matrix around the energy of the bound state are remarkably similar to those obtained with a drastic approximation used previously, in which the q(2) terms of the propagators of the exchanged rho mesons are dropped, once the cut-off in the rho rho loop function is tuned to reproduce the bound state at the same energy.  
  Address [Geng, Li-Sheng] Beihang Univ, Sch Phys & Nucl Energy Engn, Beijing 100191, Peoples R China, Email: lisheng.geng@buaa.edu.cn  
  Corporate Author Thesis  
  Publisher Chinese Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000417112000005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3398  
Permanent link to this record
 

 
Author Carlson, E.D.; Anderson, P.R.; Fabbri, A.; Fagnocchi, S.; Hirsch, W.H.; Klyap, S.A. url  doi
openurl 
  Title Semiclassical gravity in the far field limit of stars, black holes, and wormholes Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue 12 Pages (down) 124070 - 24pp  
  Keywords  
  Abstract Semiclassical gravity is investigated in a large class of asymptotically flat, static, spherically symmetric spacetimes including those containing static stars, black holes, and wormholes. Specifically the stress-energy tensors of massless free spin 0 and spin 1/2 fields are computed to leading order in the asymptotic regions of these spacetimes. This is done for spin 0 fields in Schwarzschild spacetime using a WKB approximation. It is done numerically for the spin 1/2 field in Schwarzschild, extreme Reissner-Nordstrom, and various wormhole spacetimes. And it is done by finding analytic solutions to the leading order mode equations in a large class of asymptotically flat static spherically symmetric spacetimes. Agreement is shown between these various computational methods. It is found that, for all of the spacetimes considered, the energy density and pressure in the asymptotic region are proportional to r(-5) to leading order. Furthermore, for the spin 1/2 field and the conformally coupled scalar field, the stress-energy tensor depends only on the leading order geometry in the far field limit. This is also true for the minimally coupled scalar field for spacetimes containing either a static star or a black hole, but not for spacetimes containing a wormhole.  
  Address [Carlson, Eric D.; Anderson, Paul R.; Hirsch, William H.; Klyap, Sarah A.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: ecarlson@wfu.edu  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286749400008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 531  
Permanent link to this record
 

 
Author Agullo, I.; Landete, A.; Navarro-Salas, J. url  doi
openurl 
  Title Electric-magnetic duality and renormalization in curved spacetimes Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue 12 Pages (down) 124067 - 7pp  
  Keywords  
  Abstract We point out that the duality symmetry of free electromagnetism does not hold in the quantum theory if an arbitrary classical gravitational background is present. The symmetry breaks in the process of renormalization, as also happens with conformal invariance. We show that a similar duality anomaly appears for a massless scalar field in 1 + 1 dimensions.  
  Address [Agullo, Ivan; Landete, Aitor] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000348361600012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2089  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Palatini f(R) black holes in nonlinear electrodynamics Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 84 Issue 12 Pages (down) 124059 - 14pp  
  Keywords  
  Abstract The electrically charged Born-Infeld black holes in the Palatini formalism for f(R) theories are analyzed. Specifically we study those supported by a theory f(R) = R +/- R(2)/R(P), where R(P) is Planck's curvature. These black holes only differ from their General Relativity counterparts very close to the center but may give rise to different geometrical structures in terms of inner horizons. The nature and strength of the central singularities are also significantly affected. In particular, for the model f(R) = R – R(2)/R(P) the singularity is shifted to a finite radius, r(+), and the Kretschmann scalar diverges only as 1/(r-r(+))(2).  
  Address [Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000298666600005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 878  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva