toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bigaran, I.; Felkl, T.; Hagedorn, C.; Schmidt, M.A. url  doi
openurl 
  Title Flavor anomalies meet flavor symmetry Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 7 Pages (down) 075014 - 77pp  
  Keywords  
  Abstract We construct an extension of the Standard Model with a scalar leptoquark Q iota similar to (3,1, – 13) and the discrete flavor symmetry Gf _ D17 x Z17 to explain anomalies observed in charged-current semileptonic B meson decays and in the muon anomalous magnetic moment, together with the charged fermion masses and quark mixing. The symmetry Zdiag 17 , contained in Gf, remains preserved by the leptoquark couplings, at leading order, and efficiently suppresses couplings of the leptoquark to the first generation of quarks and/or electrons, thus avoiding many stringent experimental bounds. The strongest constraints on the parameter space are imposed by the radiative charged lepton flavor violating decays a -mu y and μ-ey. A detailed analytical and numerical study demonstrates the feasibility to simultaneously explain the data on the lepton flavor universality ratios R(D) and R(D*) and the muon anomalous magnetic moment, while passing the experimental bounds from all other considered flavor observables.  
  Address [Bigaran, Innes] Univ Melbourne, ARC Ctr Excellence Dark Matter Particle Phys, Sch Phys, Melbourne, Vic 3010, Australia, Email: ibigaran@fnal.gov;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001092627100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5778  
Permanent link to this record
 

 
Author Arbelaez, C.; Fonseca, R.M.; Romao, J.C.; Hirsch, M. url  doi
openurl 
  Title Supersymmetric SO(10)-inspired GUTs with sliding scales Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 7 Pages (down) 075010 - 19pp  
  Keywords  
  Abstract We construct lists of supersymmetric models with extended gauge groups at intermediate steps, all of which are inspired by SO(10) unification. We consider three different kinds of setups: (i) the model has exactly one additional intermediate scale with a left-right (LR) symmetric group; (ii) SO(10) is broken to the LR group via an intermediate Pati-Salam scale; and (iii) the LR group is broken into SU(3)(c) X SU(2)(L) X U(1)(R) X U(1)(B-L), before breaking to the standard model (SM) group. We use sets of conditions, which we call the “sliding mechanism,” which yield unification with the extended gauge group(s) allowed at arbitrary intermediate energy scales. All models thus can have new gauge bosons within the reach of the LHC, in principle. We apply additional conditions, such as perturbative unification, renormalizability and anomaly cancellation and find that, despite these requirements, for the ansatz (i) with only one additional scale still around 50 different variants exist that can have a LR symmetry below 10 TeV. For the more complicated schemes (ii) and (iii) literally thousands of possible variants exist, and for scheme (ii) we have also found variants with very low Pati-Salam scales. We also discuss possible experimental tests of the models from measurements of supersymmetry masses. Assuming mSugra boundary conditions we calculate certain combinations of soft terms, called “invariants,” for the different classes of models. Values for all the invariants can be classified into a small number of sets, which contain information about the class of models and, in principle, the scale of beyond-minimal supersymmetric extension of the Standard Model physics, even in case the extended gauge group is broken at an energy beyond the reach of the LHC.  
  Address Univ Tecn Lisboa, Dept Fis, P-1049001 Lisbon, Portugal, Email: Carolina.Arbelaez@ist.utl.pt;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000317586900007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1401  
Permanent link to this record
 

 
Author Fileviez Perez, P.; Murgui, C. url  doi
openurl 
  Title Lepton flavor violation in left-right theory Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 7 Pages (down) 075010 - 12pp  
  Keywords  
  Abstract We investigate the predictions for lepton flavor number violating processes in the context of a simple left-right symmetric theory. In this context neutrinos are Majorana fermions and their masses are generated at the quantum level through the Zee mechanism using the simplest Higgs sector. We show that the right-handed neutrinos are generically light and can give rise to large lepton flavor violating contributions to rare processes. We discuss the correlation between the collider constraints and the predictions for lepton flavor violating processes. We find that using the predictions for μ-> e gamma and μ-> e conversion together with the collider signatures one could test this theory in the near future.  
  Address [Perez, Pavel Fileviez] Case Western Reserve Univ, CERCA, Dept Phys, Rockefeller Bldg,2076 Adelbert Rd, Cleveland, OH 44106 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399391100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3069  
Permanent link to this record
 

 
Author Domingo, F.; Kim, J.S.; Martin Lozano, V.; Martin-Ramiro, P.; Ruiz de Austri, R. url  doi
openurl 
  Title Confronting the neutralino and chargino sector of the NMSSM with the multilepton searches at the LHC Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 7 Pages (down) 075010 - 29pp  
  Keywords  
  Abstract We test the impact of the ATLAS and CMS multilepton searches performed at the LHC with 8 as well as 13 TeV center-of-mass energy (using only the pre-2018 results) on the chargino and neutralino sector of the next-to-minimal supersymmetric Standard Model (NMSSM). Our purpose consists in analyzing the actual reach of these searches for a full model and in emphasizing effects beyond the minimal supersymmetric Standard Model (MSSM) that affect the performance of current (MSSM-inspired) electroweakino searches. To this end, we consider several scenarios characterizing specific features of the NMSSM electroweakino sector. We then perform a detailed collider study, generating Monte Carlo events through PYTHIA and testing against current LHC constraints implemented in the public tool CheckMATE. We find e.g., that supersymmetric decay chains involving intermediate singlino or Higgs-singlet states can modify the naive MSSM-like picture of the constraints by inducing final states with softer or less easily identifiable SM particles-reversely, a compressed configuration with singlino next-to-lightest supersymmetric particle occasionally induces final states that are rich with photons, which could provide complementary search channels.  
  Address [Domingo, Florian; Lozano, Victor Martin] Univ Bonn, Bethe Ctr Theoret Phys, Nussallee 12, D-53115 Bonn, Germany, Email: florian.domingo@csic.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000524546800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4365  
Permanent link to this record
 

 
Author Aitken, K.; McKeen, D.; Neder, T.; Nelson, A.E. url  doi
openurl 
  Title Baryogenesis from oscillations of charmed or beautiful baryons Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 96 Issue 7 Pages (down) 075009 - 15pp  
  Keywords  
  Abstract We propose a model for CP-violating oscillations of neutral, heavy-flavor baryons into antibaryons at rates which are within a few orders of magnitude of their lifetimes. The flavor structure of the baryon violation suppresses neutron oscillations and baryon-number-violating nuclear decays to experimentally allowed rates. We also propose a scenario for producing such baryons in the early Universe via the out-of-equilibrium decays of a neutral particle, after hadronization but before nucleosynthesis. We find parameters where CP-violating baryon oscillations at a temperature of a few MeV could result in the observed asymmetry between baryons and antibaryons. Furthermore, part of the relevant parameter space for baryogenesis is potentially testable at Belle II via decays of heavy-flavor baryons into an exotic neutral fermion. The model introduces four new particles: three light Majorana fermions and a colored scalar. The lightest of these fermions is typically long lived on collider time scales and may be produced in decays of bottom and possibly charmed hadrons.  
  Address [Aitken, Kyle; Nelson, Ann E.] Univ Washington, Dept Phys, Seattle, WA 98195 USA, Email: kaitken17@gmail.com;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000412516100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3321  
Permanent link to this record
 

 
Author Coito, L.; Faubel, C.; Santamaria, A. url  doi
openurl 
  Title Composite Higgs bosons from neutrino condensates in an inverted seesaw scenario Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 7 Pages (down) 075009 - 10pp  
  Keywords  
  Abstract We present a realization of the idea that the Higgs boson is mainly a bound state of neutrinos induced by strong four-fermion interactions. The conflicts of this idea with the measured values of the top quark and Higgs boson masses are overcome by introducing, in addition to the right-handed neutrino, a new fermion singlet, which, at low energies, implements the inverse seesaw mechanism. The singlet fermions also develop a scalar bound state that mixes with the Higgs boson. This allows us to obtain a small Higgs boson mass even if the couplings are large, as required in composite scalar scenarios. The model gives the correct masses for the top quark and Higgs boson for compositeness scales below the Planck scale and masses of the new particles above the electroweak scale, so that we obtain naturally a low-scale seesaw scenario for neutrino masses. The theory contains additional scalar particles coupled to the neutral fermions, which could be tested in present and near future experiments.  
  Address [Coito, Leonardo; Faubel, Carlos; Santamaria, Arcadi] Univ Valencia, Dept Fis Teor, Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: leonardo.coito@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000524321800009 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4371  
Permanent link to this record
 

 
Author Abbas, G.; Zahiri-Abyaneh, M.; Srivastava, R. url  doi
openurl 
  Title Precise predictions for Dirac neutrino mixing Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 7 Pages (down) 075005 - 7pp  
  Keywords  
  Abstract The neutrino mixing parameters are thoroughly studied using renormalization- group evolution of Dirac neutrinos with recently proposed parametrization of the neutrino mixing angles referred to as “high-scale mixing relations.” The correlations among all neutrino mixing and CP violating observables are investigated. The predictions for the neutrino mixing angle. 23 are precise, and could be easily tested by ongoing and future experiments. We observe that the high-scale mixing unification hypothesis is incompatible with Dirac neutrinos due to updated experimental data.  
  Address [Abbas, Gauhar; Zahiri Abyaneh, Mehran; Srivastava, Rahul] Univ Valencia, CSIC, IFIC, Apt Correus 22085, Valencia, Spain, Email: gauhar@prl.res.in;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399390900009 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3071  
Permanent link to this record
 

 
Author Nath, N.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Testing generalized CP symmetries with precision studies at DUNE Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 7 Pages (down) 075005 - 13pp  
  Keywords  
  Abstract We examine the capabilities of the DUNE experiment in probing leptonic CP violation within the framework of theories with generalized CP symmetries characterized by the texture zeros of the corresponding CP transformation matrices. We investigate DUNE's potential to probe the two least known oscillation parameters, the atmospheric mixing angle theta(23) and the Dirac CP phase delta(CP). We fix theory-motivated benchmarks for (sin(2)theta(23), delta(CP)) and take them as true values in our simulations. Assuming 3.5 years of neutrino running plus 3.5 years in the antineutrino mode, we show that in all cases DUNE can significantly constrain and in certain cases rule out the generalized CP texture zero patterns.  
  Address [Nath, Newton] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China, Email: newton@ihep.ac.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000463893200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3976  
Permanent link to this record
 

 
Author Arbelaez, C.; Cepedello, R.; Fonseca, R.M.; Hirsch, M. url  doi
openurl 
  Title (g-2) anomalies and neutrino mass Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 7 Pages (down) 075005 - 14pp  
  Keywords  
  Abstract Motivated by the experimentally observed deviations from standard model predictions, we calculate the anomalous magnetic moments a(alpha) = (g – 2)(alpha) for a = e, μin a neutrino mass model originally proposed by Babu, Nandi, and Tavartkiladze (BNT). We discuss two variants of the model: the original model, and a minimally extended version with an additional hypercharge-zero triplet scalar. While the original BNT model can explain a(mu), only the variant with the triplet scalar can explain both experimental anomalies. The heavy fermions of the model can be produced at the high-luminosity LHC, and in the part of parameter space where the model explains the experimental anomalies it predicts certain specific decay patterns for the exotic fermions.  
  Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000576053400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4557  
Permanent link to this record
 

 
Author Bhattacharya, S.; Sil, A.; Roshan, R.; Vatsyayan, D. url  doi
openurl 
  Title Symmetry origin of baryon asymmetry, dark matter, and neutrino mass Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 7 Pages (down) 075005 - 10pp  
  Keywords  
  Abstract We propose a minimal model based on lepton number symmetry (and violation), to address a common origin of baryon asymmetry, dark matter and neutrino mass generation. The model consists of a vectorlike fermion to constitute the dark sector, three right-handed neutrinos (RHNs) to dictate leptogenesis and neutrino mass, while an additional complex scalar is assumed to be present in the early Universe the decay of which produces both dark matter and RHNs via lepton number violating and lepton number conserving interactions respectively. Interestingly, the presence of the same scalar helps in making the electroweak vacuum stable until the Planck scale. The unnatural largeness and smallness of the parameters required to describe correct experimental limits are attributed to lepton number violation. The allowed parameter space of the model is illustrated via a numerical scan.  
  Address [Bhattacharya, Subhaditya; Sil, Arunansu] Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, Assam, India, Email: subhab@iitg.ac.in;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000874548200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5402  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva