|   | 
Details
   web
Records
Author Villanueva-Domingo, P.; Villaescusa-Navarro, F.; Genel, S.; Angles-Alcazar, D.; Hernquist, L.; Marinacci, F.; Spergel, D.N.; Vogelsberger, M.; Narayanan, D.
Title Weighing the Milky Way and Andromeda galaxies with artificial intelligence Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 10 Pages (down) 103003 - 8pp
Keywords
Abstract We present new constraints on the masses of the halos hosting the Milky Way and Andromeda galaxies derived using graph neural networks. Our models, trained on 2,000 state-of-the-art hydrodynamic simulations of the CAMELS project, only make use of the positions, velocities and stellar masses of the galaxies belonging to the halos, and are able to perform likelihood-free inference on halo masses while accounting for both cosmological and astrophysical uncertainties. Our constraints are in agreement with estimates from other traditional methods, within our derived posterior standard deviation.
Address [Villanueva-Domingo, Pablo; Narayanan, Desika] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46980 Paterna, Spain, Email: pablo.villanueva.domingo@gmail.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000988340900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5539
Permanent link to this record
 

 
Author Plaza, J.; Martinez, T.; Becares, V.; Cano-Ott, D.; Villamarin, D.; de Rada, A.P.; Mendoza, E.; Pesudo, V.; Santorelli, R.; Pena, C.; Balibrea-Correa, J.; Boeltzig, A.
Title Thermal neutron background at Laboratorio Subterraneo de Canfranc (LSC) Type Journal Article
Year 2023 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 146 Issue Pages (down) 102793 - 9pp
Keywords Underground neutron background; Thermal neutron flux; He-3 proportional counter; Pulse shape discrimination
Abstract The thermal neutron background at Laboratorio Subterraneo de Canfranc (LSC) has been determined using several He-3 proportional counter detectors. Bare and Cd shielded counters were used in a series of long measurements. Pulse shape discrimination techniques were applied to discriminate between neutron and gamma signals as well as other intrinsic contributions. Montecarlo simulations allowed us to estimate the sensitivity of the detectors and calculate values for the background flux of thermal neutrons inside Hall-A of LSC. The obtained value is (3.5 +/- 0.8)x10(-6) n/cm(2)s, and is within an order of magnitude compared to similar facilities.
Address [Plaza, J.; Martinez, T.; Becares, V; Cano-Ott, D.; Villamarin, D.; Perez de Rada, A.; Mendoza, E.; Pesudo, V; Santorelli, R.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Ave Complutense 40, Madrid 28040, Spain, Email: julio.plaza@ciemat.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000928281600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5482
Permanent link to this record
 

 
Author Di Valentino, E. et al; Mena, O.
Title Snowmass2021-Letter of interest cosmology intertwined IV: The age of the universe and its curvature Type Journal Article
Year 2021 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 131 Issue Pages (down) 102607 - 5pp
Keywords
Abstract A precise measurement of the curvature of the Universe is of prime importance for cosmology since it could not only confirm the paradigm of primordial inflation but also help in discriminating between different early-Universe scenarios. Recent observations, while broadly consistent with a spatially flat standard A Cold Dark Matter (ACDM) model, show tensions that still allow (and, in some cases, even suggest) a few percent deviations from a flat universe. In particular, the Planck Cosmic Microwave Background power spectra, assuming the nominal likelihood, prefer a closed universe at more than 99% confidence level. While new physics could be at play, this anomaly may be the result of an unresolved systematic error or just a statistical fluctuation. However, since positive curvature allows a larger age of the Universe, an accurate determination of the age of the oldest objects provides a smoking gun in confirming or falsifying the current flat ACDM model.
Address [Di Valentino, Eleonora; Chluba, Jens; Harrison, Ian; Hart, Luke; Pace, Francesco] Univ Manchester, JBCA, Manchester, Lancs, England, Email: eleonora.di-valentino@durham.ac.uk
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000657813100007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4855
Permanent link to this record
 

 
Author Di Valentino, E. et al; Mena, O.
Title Snowmass2021-Letter of interest cosmology intertwined I: Perspectives for the next decade Type Journal Article
Year 2021 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 131 Issue Pages (down) 102606 - 4pp
Keywords
Abstract The standard Lambda Cold Dark Matter cosmological model provides an amazing description of a wide range of astrophysical and astronomical data. However, there are a few big open questions, that make the standard model look like a first-order approximation to a more realistic scenario that still needs to be fully understood. In this Letter of Interest we will list a few important goals that need to be addressed in the next decade, also taking into account the current discordances present between the different cosmological probes, as the Hubble constant H-0 value, the sigma S-8(8) tension, and the anomalies present in the Planck results. Finally, we will give an overview of upgraded experiments and next-generation space-missions and facilities on Earth that will be of crucial importance to address all these questions.
Address [Di Valentino, Eleonora; Chluba, Jens; Harrison, Ian; Hart, Luke; Pace, Francesco] Univ Manchester, JBCA, Manchester, Lancs, England, Email: eleonora.di-valentino@durham.ac.uk
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000657813100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4856
Permanent link to this record
 

 
Author Di Valentino, E. et al; Mena, O.
Title Snowmass2021-Letter of interest cosmology intertwined II: The hubble constant tension Type Journal Article
Year 2021 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 131 Issue Pages (down) 102605 - 8pp
Keywords
Abstract The current cosmological probes have provided a fantastic confirmation of the standard A Cold Dark Matter cosmological model, which has been constrained with unprecedented accuracy. However, with the increase of the experimental sensitivity, a few statistically significant tensions between different independent cosmological datasets emerged. While these tensions can be in part the result of systematic errors, the persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the need for new physics. In this Letter of Interest we will focus on the 4.4 sigma – tension between the Planck estimate of the Hubble constant H-0 and the SH0ES collaboration measurements. After showing the H-0 evaluations made from different teams using different methods and geometric calibrations, we will list a few interesting models of new physics that could solve this tension and discuss how the next decade's experiments will be crucial.
Address [Di Valentino, Eleonora; Chluba, Jens; Harrison, Ian; Hart, Luke; Pace, Francesco] Univ Manchester, JBCA, Manchester, Lancs, England, Email: eleonora.di-valentino@durham.ac.uk
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000657813100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4853
Permanent link to this record
 

 
Author Di Valentino, E. et al; Mena, O.
Title Cosmology intertwined III: f sigma(8) and S-8 Type Journal Article
Year 2021 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 131 Issue Pages (down) 102604 - 6pp
Keywords cosmological tensions; cosmological parameters
Abstract The standard A Cold Dark Matter cosmological model provides a wonderful fit to current cosmological data, but a few statistically significant tensions and anomalies were found in the latest data analyses. While these anomalies could be due to the presence of systematic errors in the experiments, they could also indicate the need for new physics beyond the standard model. In this Letter of Interest we focus on the tension between Planck data and weak lensing measurements and redshift surveys, in the value of the matter energy density Omega(m), and the amplitude sigma(8) (or the growth rate f sigma(8)) of cosmic structure. We list a few promising models for solving this tension, and discuss the importance of trying to fit multiple cosmological datasets with complete physical models, rather than fitting individual datasets with a few handpicked theoretical parameters.
Address [Di Valentino, Eleonora; Chluba, Jens; Harrison, Ian; Hart, Luke; Pace, Francesco] Univ Manchester, JBCA, Manchester, Lancs, England, Email: eleonora.di-valentino@durham.ac.uk
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000657813100006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4854
Permanent link to this record
 

 
Author IGISOL Collaboration (Zakari-Issoufou, A.A. et al); Algora, A.; Tain, J.L.; Valencia, E.; Agramunt, J.; Estevez, E.; Gelletly, W.; Jordan, M.D.; Molina, F.; Perez-Cerdan, A.B.; Rubio, B.
Title Total Absorption Spectroscopy Study of Rb-92 Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape Type Journal Article
Year 2015 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 115 Issue 10 Pages (down) 102503 - 6pp
Keywords
Abstract The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. Rb-92 makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied Rb-92 decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.
Address [Zakari-Issoufou, A. -A.; Fallot, M.; Porta, A.; Bui, V. M.; Cormon, S.; Estienne, M.; Briz, J. A.; Cucoanes, A.; Shiba, T.] Univ Nantes, Ecole Mines Nantes, SUBATECH, CNRS,IN2P3, F-44307 Nantes, France, Email: porta@subatech.in2p3.fr
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000360603500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2375
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanderswood, I.
Title Measurement of the Prompt D0 Nuclear Modification Factor in p-Pb Collisions at √SNN=8.16 TeV Type Journal Article
Year 2023 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 131 Issue 10 Pages (down) 102301 - 12pp
Keywords
Abstract The production of prompt D0 mesons in proton-lead collisions in both the forward and backward rapidity regions at a center-of-mass energy per nucleon pair of √SNN= = 8.16 TeV is measured by the sNN LHCb experiment. The nuclear modification factor of prompt D0 mesons is determined as a function of the transverse momentum pT, and the rapidity in the nucleon-nucleon center-of-mass frame y*. In the forward rapidity region, significantly suppressed production with respect to pp collisions is measured, which provides significant constraints on models of nuclear parton distributions and hadron production down to the very low Bjorken-x region of similar to 10-5. In the backward rapidity region, a suppression with a significance of 2.0-3.8 standard deviations compared to parton distribution functions in a nuclear environment expectations is found in the kinematic region of pT 6 GeV/c and -3.25 < y* < -2.5, corresponding to x similar to 0.01.
Address [Leite, J. Baptista de Souza; Bediaga, I. B.; Torres, M. Cruz; Da Graca, U. De Freitas Carneiro; Miranda, J. M. De; dos Reis, A. C.; Falcao, L. N.; Fantini, L.; Gomes, A.] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:001085061700005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5845
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aikot, A.; Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Chitishvili, M.; Costa, M.J.; Didenko, M.; Escobar, C.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Lacasta, C.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Saibel, A.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valiente Moreno, E.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M.
Title Measurement of the Centrality Dependence of the Dijet Yield in p plus Pb Collisions at √sNN=8.16 TeV with the ATLAS Detector Type Journal Article
Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 132 Issue 10 Pages (down) 102301 - 22pp
Keywords
Abstract ATLAS measured the centrality dependence of the dijet yield using 165 nb-1 of p + Pb data collected at root sNN = 8.16 TeV in 2016. The event centrality, which reflects the p + Pb impact parameter, is characterized by the total transverse energy registered in the Pb-going side of the forward calorimeter. The central-to-peripheral ratio of the scaled dijet yields, RCP, is evaluated, and the results are presented as a function of variables that reflect the kinematics of the initial hard parton scattering process. The RCP shows a scaling with the Bjorken x of the parton originating from the proton, xp, while no such trend is observed as a function of xPb. This analysis provides unique input to understanding the role of small proton spatial configurations in p + Pb collisions by covering parton momentum fractions from the valence region down to xp similar to 10-3 and xPb similar to 4 x 10-4.
Address [Filmer, E. K.; Grant, C. M.; Jackson, P.; Kong, A. X. Y.; Pandya, H. D.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:001202029400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6103
Permanent link to this record
 

 
Author Senes, E.; Argyropoulos, T.; Tecker, F.; Wuensch, W.
Title Beam-loading effect on breakdown rate in high-gradient accelerating cavities: An experiment at the Compact Linear Collider Test Facility at CERN Type Journal Article
Year 2018 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams
Volume 21 Issue 10 Pages (down) 102001 - 8pp
Keywords
Abstract Radio frequency breakdown rate is a crucial performance parameter that ensures that the design luminosity is achieved in the CLIC linear collider. The required low breakdown rate for CLIC, of the order of 10(-7) breakdown pulse(-1) m(-1), has been demonstrated in a number of 12 GHz CLIC prototype structures at gradients in excess of the design 100 MV/m accelerating gradient, however without the presence of the accelerated beam and associated beam loading. The beam loading induced by the approximately 1 A CLIC main beam significantly modifies the field distribution inside the structures, and the effect on breakdown rate is potentially significant so needs to be determined. A dedicated experiment has been carried out in the CLIC Test Facility CTF3 to measure this effect, and the results are presented.
Address [Senes, Eugenio] John Adams Inst, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England, Email: eugenio.senes@cern.ch
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9888 ISBN Medium
Area Expedition Conference
Notes WOS:000447731900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3768
Permanent link to this record