|   | 
Details
   web
Records
Author Arbelaez, C.; Carcamo Hernandez, A.E.; Cepedello, R.; Kovalenko, S.; Schmidt, I.
Title Sequentially loop suppressed fermion masses from a single discrete symmetry Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages (up) 043 - 24pp
Keywords Beyond Standard Model; Neutrino Physics; Quark Masses and SM Parameters
Abstract We propose a systematic and renormalizable sequential loop suppression mechanism to generate the hierarchy of the Standard Model fermion masses from one discrete symmetry. The discrete symmetry is sequentially softly broken in order to generate one-loop level masses for the bottom, charm, tau and muon leptons and two-loop level masses for the lightest Standard Model charged fermions. The tiny masses for the light active neutrinos are produced from radiative type-I seesaw mechanism, where the Dirac mass terms are effectively generated at two-loop level.
Address [Arbelaez, Carolina; Carcamo Hernandez, A. E.; Schmidt, Ivan] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000540500300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4430
Permanent link to this record
 

 
Author Beltran, R.; Cottin, G.; Helo, J.C.; Hirsch, M.; Titov, A.; Wang, Z.S.
Title Long-lived heavy neutral leptons at the LHC: four-fermion single-N-R operators Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages (up) 044 - 18pp
Keywords Beyond Standard Model; Effective Field Theories; Neutrino Physics
Abstract Interest in searches for heavy neutral leptons (HNLs) at the LHC has increased considerably in the past few years. In the minimal scenario, HNLs are produced and decay via their mixing with active neutrinos in the Standard Model (SM) spectrum. However, many SM extensions with HNLs have been discussed in the literature, which sometimes change expectations for LHC sensitivities drastically. In the N-R SMEFT, one extends the SM effective field theory with operators including SM singlet fermions, which allows to study HNL phenomenology in a “model independent” way. In this paper, we study the sensitivity of ATLAS to HNLs in the N-R SMEFT for four-fermion operators with a single HNL. These operators might dominate both production and decay of HNLs, and we find that new physics scales in excess of 20 TeV could be probed at the high-luminosity LHC.
Address [Beltran, Rebeca; Hirsch, Martin] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Apartado 22085, E-46071 Valencia, Spain, Email: rebeca.beltran@ifis.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000742012500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5079
Permanent link to this record
 

 
Author Escudero, M.; Rius, N.; Sanz, V.
Title Sterile neutrino portal to Dark Matter I: the U(1)(B-L) case Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages (up) 045 - 27pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract In this paper we explore the possibility that the sterile neutrino and Dark Matter sectors in the Universe have a common origin. We study the consequences of this assumption in the simple case of coupling the dark sector to the Standard Model via a global U(1)(B-L), broken down spontaneously by a dark scalar. This dark scalar provides masses to the dark fermions and communicates with the Higgs via a Higgs portal coupling. We find an interesting interplay between Dark Matter annihilation to dark scalars – the CP-even that mixes with the Higgs and the CP-odd which becomes a Goldstone boson, the Majoron and heavy neutrinos, as well as collider probes via the coupling to the Higgs. Moreover, Dark Matter annihilation into sterile neutrinos and its subsequent decay to gauge bosons and quarks, charged leptons or neutrinos lead to indirect detection signatures which are close to current bounds on the gamma ray flux from the galactic center and dwarf galaxies.
Address [Escudero, Miguel; Rius, Nuria] Univ Valencia, Dept Fis Teor, CSIC, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: miguel.escudero@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000394747600008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3018
Permanent link to this record
 

 
Author Helo, J.C.; Hirsch, M.; Ota, T.
Title Proton decay and light sterile neutrinos Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages (up) 047 - 15pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract Within the standard model, non-renormalizable operators at dimension six (d = 6) violate baryon and lepton number by one unit and thus lead to proton decay. Here, we point out that the proton decay mode with a charged pion and missing energy can be a characteristic signature of d = 6 operators containing a light sterile neutrino, if it is not accompanied by the standard pi(0)e(+) final state. We discuss this effect first at the level of effective operators and then provide a concrete model with new physics at the TeV scale, in which the lightness of the active neutrinos and the stability of the proton are related.
Address [Helo, Juan C.] Univ La Serena, Fac Ciencias, Dept Fis, Ave Cisternas 1200, La Serena, Chile, Email: jchelo@userena.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000435023100004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3610
Permanent link to this record
 

 
Author de Medeiros Varzielas, I.; Lopez-Ibañez, M.L.; Melis, A.; Vives, O.
Title Controlled flavor violation in the MSSM from a unified Delta(27) flavor symmetry Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages (up) 047 - 22pp
Keywords Beyond Standard Model; Supersymmetric Standard Model; Quark Masses and SM Parameters
Abstract We study the phenomenology of a unified supersymmetric theory with a flavor symmetry Delta(27). The model accommodates quark and lepton masses, mixing angles and CP phases. In this model, the Dirac and Majorana mass matrices have a unified texture zero structure in the (1, 1) entry that leads to the Gatto-Sartori-Tonin relation between the Cabibbo angle and ratios of the masses in the quark sectors, and to a natural departure from zero of the theta 13(l) angle in the lepton sector. We derive the flavor structures of the trilinears and soft mass matrices, and show their general non-universality. This causes large flavor violating effects. As a consequence, the parameter space for this model is constrained, allowing it to be (dis)proven by flavor violation searches in the next decade. Although the results are model specific, we compare them to previous studies to show similar flavor effects (and associated constraints) are expected in general in supersymmetric flavor models, and may be used to distinguish them.
Address [Varzielas, Ivo de Medeiros] Univ Lisbon, Inst Super Tecn, Dept Fis, CFTP, Ave Rovisco Pais 1, P-1049 Lisbon, Portugal, Email: ivo.de@udo.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000444676300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3735
Permanent link to this record
 

 
Author Lopez-Ibañez, M.L.; Melis, A.; Meloni, D.; Vives, O.
Title Lepton flavor violation and neutrino masses from A(5) and CP in the non-universal MSSM Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages (up) 047 - 34pp
Keywords Beyond Standard Model; Neutrino Physics; Quark Masses and SM Parameters; Supersymmetric Standard Model
Abstract We analyze the phenomenological consequences of embedding a flavor symmetry based on the groups A(5) and CP in a supersymmetric framework. We concentrate on the leptonic sector, where two different residual symmetries are assumed to be conserved at leading order for charged and neutral leptons. All possible realizations to generate neutrino masses at tree level are investigated. Sizable flavor violating effects in the charged lepton sector are unavoidable due to the non-universality of soft-breaking terms determined by the symmetry. We derive testable predictions for the neutrino spectrum, lepton mixing and flavor changing processes with non-trivial relations among observables.
Address [Lopez-Ibanez, M. L.; Meloni, Davide] Univ Roma Tre, Dipartimento Matemat & Fis, Via Vasca Navale 84, I-00146 Rome, Italy, Email: maloi2@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000471630100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4057
Permanent link to this record
 

 
Author de Blas, J.; Eberhardt, O.; Krause, C.
Title Current and future constraints on Higgs couplings in the nonlinear Effective Theory Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages (up) 048 - 45pp
Keywords Chiral Lagrangians; Effective Field Theories; Higgs Physics; Beyond Standard Model
Abstract We perform a Bayesian statistical analysis of the constraints on the nonlinear Effective Theory given by the Higgs electroweak chiral Lagrangian. We obtain bounds on the effective coefficients entering in Higgs observables at the leading order, using all available Higgs-boson signal strengths from the LHC runs 1 and 2. Using a prior dependence study of the solutions, we discuss the results within the context of natural-sized Wilson coefficients. We further study the expected sensitivities to the different Wilson coefficients at various possible future colliders. Finally, we interpret our results in terms of some minimal composite Higgs models.
Address [de Blas, Jorge] Univ Padua, Dipartimento Fis & Astron Galileo Galilei, Via Marzolo 8, I-35131 Padua, Italy, Email: Jorge.DeBlasMateo@pd.infn.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000438618900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3657
Permanent link to this record
 

 
Author Li, X.Q.; Li, Y.M.; Lu, G.R.; Su, F.
Title B-s(0)-(B)over-bar(s)(0) mixing in a family non-universal Z ' model revisited Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages (up) 049 - 27pp
Keywords Beyond Standard Model; B-Physics; CP violation
Abstract Motivated by the very recent measurements performed at the LHCb and the Tevatron of the B-s(0) – (B) over bar (0)(s) mixing, in this paper we revisit it in a family non-universal Z' model, to check if a simultaneous explanation for all the mixing observables, especially for the like-sign dimuon charge asymmetry observed by the D0 collaboration, could be made in such a specific model. In the first scenario where the Z' boson contributes only to the off-diagonal element M-12(s), it is found that, once the combined constraints from Delta M-s, phi(s) and Delta Gamma(s) are imposed, the model could not explain the measured flavour-specific CP asymmetry a(fs)(s), at least within its 1 sigma ranges. In the second scenario where the NP contributes also to the absorptive part Gamma(s)(12) via tree-level Z'-induced b -> c (c) over bars operators, we find that, with the constraints from Delta M-s, phi(s) and the indirect CP asymmetry in (B) over bar (d) -> J/psi K-S taken into account, the present measured 1 sigma experimental ranges for a(fs)(s) could not be reproduced too. Thus, such a specific Z' model with our specific assumptions could not simultaneously reconcile all the present data on B-s(0) – B-s(0) mixing. Future improved measurements from the LHCb and the proposed superB experiments, especially of the flavour-specific CP asymmetries, are expected to shed light on the issue.
Address [Li, Xin-Qiang; Li, Yan-Min; Lu, Gong-Ru] Henan Normal Univ, Dept Phys, Xinxiang 453007, Henan, Peoples R China, Email: xqli@itp.ac.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000305236000049 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1103
Permanent link to this record
 

 
Author Alcaide, J.; Das, D.; Santamaria, A.
Title A model of neutrino mass and dark matter with large neutrinoless double beta decay Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages (up) 049 - 21pp
Keywords Beyond Standard Model; Higgs Physics; Neutrino Physics
Abstract We propose a model where neutrino masses are generated at three loop order but neutrinoless double beta decay occurs at one loop. Thus we can have large neutrinoless double beta decay observable in the future experiments even when the neutrino masses are very small. The model receives strong constraints from the neutrino data and lepton flavor violating decays, which substantially reduces the number of free parameters. Our model also opens up the possibility of having several new scalars below the TeV regime, which can be explored at the collider experiments. Additionally, our model also has an unbroken Z(2) symmetry which allows us to identify a viable Dark Matter candidate.
Address [Alcaide, Julien] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: julien.alcaide@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000399275900008 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3067
Permanent link to this record
 

 
Author de Gouvea, A.; De Romeri, V.; Ternes, C.A.
Title Probing neutrino quantum decoherence at reactor experiments Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages (up) 049 - 17pp
Keywords Neutrino Physics; Beyond Standard Model
Abstract We explore how well reactor antineutrino experiments can constrain or measure the loss of quantum coherence in neutrino oscillations. We assume that decoherence effects are encoded in the size of the neutrino wave-packet, sigma. We find that the current experiments Daya Bay and the Reactor Experiment for Neutrino Oscillation (RENO) already constrain sigma >1.0x10(-4) nm and estimate that future data from the Jiangmen Underground Neutrino Observatory (JUNO) would be sensitive to sigma <2.1x10(-3) nm. If the effects of loss of coherence are within the sensitivity of JUNO, we expect sigma to be measured with good precision. The discovery of nontrivial decoherence effects in JUNO would indicate that our understanding of the coherence of neutrino sources is, at least, incomplete.
Address [de Gouvea, Andre] Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA, Email: degouvea@northwestern.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000561756000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4501
Permanent link to this record