toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Centelles Chulia, S.; Cepedello, R.; Medina, O. url  doi
openurl 
  Title Absolute neutrino mass scale and dark matter stability from flavour symmetry Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages (up) 080 - 23pp  
  Keywords Discrete Symmetries; Flavour Symmetries; Neutrino Mixing; Particle Nature of Dark Matter  
  Abstract We explore a simple but extremely predictive extension of the scotogenic model. We promote the scotogenic symmetry Z(2) to the flavour non-Abelian symmetry sigma(81), which can also automatically protect dark matter stability. In addition, sigma(81) leads to striking predictions in the lepton sector: only Inverted Ordering is realised, the absolute neutrino mass scale is predicted to be m(lightest)approximate to 7.5x10(-4) eV and the Majorana phases are correlated in such a way that vertical bar m(ee)vertical bar approximate to 0.018 eV. The model also leads to a strong correlation between the solar mixing angle theta(12) and delta(CP), which may be falsified by the next generation of neutrino oscillation experiments. The setup is minimal in the sense that no additional symmetries or flavons are required.  
  Address [Chulia, Salvador Centelles] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: chulia@mpi-hd.mpg.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000867661300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5387  
Permanent link to this record
 

 
Author Bernabeu, J.; Botella, F.J.; Nebot, M. url  doi
openurl 
  Title Genuine T, CP, CPT asymmetry parameters for the entangled B-d system Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages (up) 100 - 24pp  
  Keywords Discrete Symmetries; Space-Time Symmetries  
  Abstract The precise connection between the theoretical T, CP, CPT asymmetries, in terms of transition probabilities between the filtered neutral meson B-d states, and the experimental asymmetries, in terms of the double decay rate intensities for Flavour-CP eigenstate decay products in a B-d-factory of entangled states, is established. This allows the identification of genuine Asymmetry Parameters in the time distribution of the asymmetries and their measurability by disentangling genuine and possible fake terms. We express the nine asymmetry parameters three different observables for each one of the three symmetries in terms of the ingredients of the Weisskopf-Wigner dynamical description of the entangled B-d-meson states and we obtain a global fit to their values from the BaBar collaboration experimental results. The possible fake terms are all compatible with zero and the information content of the nine asymmetry parameters is indeed different. The non -vanishing Delta l(c)(T) = 0.687 +/- 0.020 and Delta l(c)(CP) = 0.680 +/- 0.021 are impressive separate direct evidence of Time -Reversal -violation and CP-violation in these transitions and compatible with Standard Model expectations. An intriguing 2 sigma effect for the Re(theta) parameter responsible of CPT -violation appears which, interpreted as an upper limit, leads to vertical bar M (B) over baro (B) over baro vertical bar MBoBo < 4.0 x 10(-5) eV at 95% C.L. for the diagonal flavour terms of the mass matrix. It contributes to the CP-violating Delta l(c)(CP) asymmetry parameter in an unorthodox manner – in its cos(Delta M t) time dependence-, and it is accessible in facilities with non-entangled B-d's, like the LHCb experiment.  
  Address [Bernabeu, Jose] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: Jose.Bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000379028400001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2752  
Permanent link to this record
 

 
Author Bernabeu, J.; Di Domenico, A.; Villanueva-Perez, P. url  doi
openurl 
  Title Direct test of time reversal symmetry in the entangled neutral kaon system at a phi-factory Type Journal Article
  Year 2013 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B  
  Volume 868 Issue 1 Pages (up) 102-119  
  Keywords Time reversal violation; Discrete symmetries; Neutral kaons; phi-Factory  
  Abstract We present a novel method to perform a direct T (time reversal) symmetry test in the neutral kaon system, independent of any CP and/or CPT symmetry tests. This is based on the comparison of suitable transition probabilities, where the required interchange of in <-> out states for a given process is obtained exploiting the Einstein-Podolski-Rosen correlations of neutral kaon pairs produced at a phi-factory. In the time distribution between the two decays, we compare a reference transition like the one defined by the time-ordered decays (l(-), pi pi) with the T-conjugated one defined by (3 pi(0), l(+)). With the use of this and other T-conjugated comparisons, the KLOE-2 experiment at DA Phi NE could make a statistically significant test.  
  Address [Bernabeu, J.; Villanueva-Perez, P.] Univ Valencia, Dept Theoret Phys, Valencia, Spain, Email: jose.bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0550-3213 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000314194800006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1320  
Permanent link to this record
 

 
Author Bernabeu, J.; Segarra, A. url  doi
openurl 
  Title Do T asymmetries for neutrino oscillations in uniform matter have a CP-even component? Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages (up) 103 - 12pp  
  Keywords CP violation; Discrete Symmetries; Neutrino Physics  
  Abstract Observables of neutrino oscillations in matter have, in general, contributions from the effective matter potential. It contaminates the CP violation asymmetry adding a fake effect that has been recently disentangled from the genuine one by their different behavior under T and CPT. Is the genuine T-odd CPT-invariant component of the CP asymmetry coincident with the T asymmetry? Contrary to CP, matter effects in uniform matter cannot induce by themselves a non-vanishing T asymmetry; however, the question of the title remained open. We demonstrate that, in the presence of genuine CP violation, there is a new non-vanishing CP-even, and so CPT-odd, component in the T asymmetry in matter, which is of odd-parity in both the phase delta of the flavor mixing and the matter parameter a. The two disentangled components, genuine A(alpha beta)(T;CP) and fake A(alpha beta)(T;CPT), could be experimentally separated by the measurement of the two T asymmetries in matter (nu(alpha) <-> nu(beta)) and ((nu) over bar <-> (nu) over bar (beta)). For the (nu(mu) <-> nu(e)) transitions, the energy dependence of the new A(mu e)(T;CPT) component is like the matter-induced term A(mu e)(CP;CPT) of the CP asymmetry which is odd under a change of the neutrino mass hierarchy. We have thus completed the physics involved in all observable asymmetries in matter by means of their disentanglement into the three independent components, genuine A(alpha beta)(CP;T) and fake A(alpha beta)(CP;CPT) and A(alpha beta)(T;CPT).  
  Address [Bernabeu, Jose] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Valencia, Spain, Email: Jose.Bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000462327100001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3961  
Permanent link to this record
 

 
Author de Medeiros Varzielas, I.; King, S.F.; Luhn, C.; Neder, T. url  doi
openurl 
  Title Spontaneous CP violation in multi-Higgs potentials with triplets of Delta(3n(2)) and Delta(6n(2)) Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages (up) 136 - 56pp  
  Keywords CP violation; Discrete Symmetries; Higgs Physics; Beyond Standard Model  
  Abstract Motivated by discrete flavour symmetry models, we analyse Spontaneous CP Violation (SCPV) for potentials involving three or six Higgs fi elds (both electroweak doublets and singlets) which fall into irreducible triplet representations of discrete symmetries belonging to the Delta(3n(2)) and Delta(6n(2)) series, including A(4), S-4, Delta(27) and Delta(54). For each case, we give the potential and fi nd various global minima for di ff erent regions of the parameter space of the potential. Using CP-odd basis Invariants that indicate the presence of Spontaneous CP Violation we separate the VEVs into those that do or do not violate CP. In cases where CP is preserved we reveal a CP symmetry of the potential that is preserved by those VEVs, otherwise we display a non-zero CP-odd Invariant. Finally we identify interesting cases where there is Spontaneous Geometrical CP Violation in which the VEVs have geometrical phases.  
  Address [Varzielas, Ivo de Medeiros; King, Stephen F.; Neder, Thomas] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England, Email: ivo.de@udo.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000416354700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3383  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva