toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Li, H.P.; Yi, J.Y.; Xiao, C.W.; Yao, D.L.; Liang, W.H.; Oset, E. url  doi
openurl 
  Title Correlation function and the inverse problem in the BD interaction Type Journal Article
  Year 2024 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 48 Issue 5 Pages (down) 053107 - 7pp  
  Keywords meson-meson interaction; correlation function; BD system; scattering observables  
  Abstract We study the correlation functions of the (BD+)-D-0, (B+D0) system, which develops a bound state of approximately 40MeV, using inputs consistent with the T-cc(3875) state. Then, we address the inverse problem starting from these correlation functions to determine the scattering observables related to the system, including the existence of the bound state and its molecular nature. The important output of the approach is the uncertainty with which these observables can be obtained, considering errors in the (BD+)-D-0, (B+D0) correlation functions typical of current values in correlation functions. We find that it is possible to obtain scattering lengths and effective ranges with relatively high precision and the existence of a bound state. Although the pole position is obtained with errors of the order of 50% of the binding energy, the molecular probability of the state is obtained with a very small error of the order of 6%. All these findings serve as motivation to perform such measurements in future runs of high energy hadron collisions.  
  Address [Li, Hai-Peng; Xiao, Chu-Wen; Liang, Wei-Hong; Oset, Eulogio] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China, Email: xiaochw@gxnu.edu.cn;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001205326100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6110  
Permanent link to this record
 

 
Author Dai, L.Y.; Kang, X.W.; Meissner, U.G.; Song, X.Y.; Yao, D.L. url  doi
openurl 
  Title Amplitude analysis of the anomalous decay eta ' -> pi(+) pi(-) gamma Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 97 Issue 3 Pages (down) 036012 - 12pp  
  Keywords  
  Abstract In this paper we perform an amplitude analysis of eta ' -> pi(+)pi(-)gamma and confront it with the latest BESIII data. Based on the final-state interaction theorem, we represent the amplitude in terms of an Omnes function multiplied by a form factor that corresponds to the contributions from left-hand cuts and right-hand cuts in the inelastic channels. We also take into account the isospin violation effect induced by rho-omega mixing. Our results show that the anomaly contribution is mandatory in order to explain the data. Its contribution to the decay width of Gamma(eta ' -> pi pi gamma) is larger than that induced by isospin violation. Finally we extract the pole positions of the rho and omega as well as their corresponding residues.  
  Address [Dai, Ling-Yun] Hunan Univ, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China, Email: l.dai@fz-juelich.de;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000424904000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3489  
Permanent link to this record
 

 
Author Yao, D.L.; Fernandez-Soler, P.; Guo, F.K.; Nieves, J. url  doi
openurl 
  Title New parametrization of the form factors in (B)over-bar -> Dl(nu)over-bar(l) decays Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 3 Pages (down) 034014 - 7pp  
  Keywords  
  Abstract A new model-independent parametrization is proposed for the hadronic form factors in the semileptonic (B) over bar -> Dl (nu) over bar (l) decay. By a combined consideration of the recent experimental and lattice QCD data, we determine precisely the Cabibbo-Kobayashi-Maskawa matrix element vertical bar V-cb vertical bar = 41.01(75) x 10(-3) and the ratio R-D = BR((B) over bar -> D tau(nu) over bar (tau))/BR((B) over bar -> Dl (nu) over bar (l)) = 0.301(5). The coefficients in this parametrization, related to phase shifts by sumrulelike dispersion relations and hence called phase moments, encode important scattering information of the (B) over bar (D) over bar interactions which are poorly known so far. Thus, we give strong hints about the existence of at least one bound and one virtual (B) over bar (D) over bar S-wave 0(+) states, subject to uncertainties produced by potentially sizable inelastic effects. This formalism is also applicable for any other semileptonic processes induced by the weak b -> c transition.  
  Address [Yao, De-Liang] Hunan Univ, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000513217400004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4277  
Permanent link to this record
 

 
Author Yao, D.L. url  doi
openurl 
  Title Masses and sigma terms of doubly charmed baryons up to O(p(4)) in manifestly Lorentz-invariant baryon chiral perturbation theory Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 97 Issue 3 Pages (down) 034012 - 12pp  
  Keywords  
  Abstract We calculate the masses and sigma terms of the doubly charmed baryons up to next-to-next-to-next-toleading order [i.e., O(p(4))] in a covariant baryon chiral perturbation theory by using the extended-on-mass-shell renormalization scheme. Their expressions both in infinite and finite volumes are provided for chiral extrapolation in lattice QCD. As a first application, our chiral results of the masses are confronted with the existing lattice QCD data in the presence of finite-volume corrections. Up to O(p(3)), all relevant low-energy constants can be well determined. As a consequence, we obtain the physical values for the masses of Xi(cc) and Omega(cc) baryons by extrapolating to the physical limit. Our determination of the Xi(cc) mass is consistent with the recent experimental value by LHCb Collaboration, however, larger than the one by SELEX Collaboration. In addition, we predict the pion-baryon and strangeness-baryon sigma terms, as well as the mass splitting between the Xi(cc) and Omega(cc) states. Their quark mass dependences are also discussed. The numerical procedure can be applied to the chiral results of O(p(4)) order, where more unknown constants are involved, when more data are available for unphysical pion masses.  
  Address [Yao, De-Liang] Ctr Mixto CSIC UV, Inst Fis Corpuscular, Inst Invest Paterna, Apartado 22085, Valencia 46071, Spain, Email: Deliang.Yao@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000424747400004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3487  
Permanent link to this record
 

 
Author Wang, Y.F.; Yao, D.L.; Zheng, H.Q. url  doi
openurl 
  Title On the existence of N*(890) resonance in S-11 channel of N scatterings Type Journal Article
  Year 2019 Publication Frontiers of Physics Abbreviated Journal Front. Phys.  
  Volume 14 Issue 2 Pages (down) 24501 - 6pp  
  Keywords dispersion relations; N scatterings; nucleon resonance  
  Abstract Low-energy partial-wave N scattering data is reexamined with the help of the production representation of partial-wave S matrix, where branch cuts and poles are thoroughly under consideration. The left-hand cut contribution to the phase shift is determined, with controlled systematic error estimates, by using the results of O(p(3)) chiral perturbative amplitudes obtained in the extended-onmass- shell scheme. In S-11 and P-11 channels, severe discrepancies are observed between the phase shift data and the sum of all known contributions. Statistically satisfactory fits to the data can only be achieved by adding extra poles in the two channels. We find that a S-11 resonance pole locates at zr = (0:895-0:081)-(0:164-0:023)i GeV, on the complex s-plane. On the other hand, a P-11 virtual pole, as an accompanying partner of the nucleon bound-state pole, locates atzv = (0:966-0:018) GeV, slightly above the nucleon pole on the real axis below threshold. Physical origin of the two newly established poles is explored to the best of our knowledge. It is emphasized that the O(p(3)) calculation greatly improves the fit quality comparing with the previous O(p(2)) one.  
  Address [Wang, Yu-Fei; Zheng, Han-Qing] Peking Univ, Dept Phys, Beijing 100871, Peoples R China, Email: deliang.yao@ific.uv.es  
  Corporate Author Thesis  
  Publisher Higher Education Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-0462 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000454564100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3857  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva