|   | 
Details
   web
Records
Author Delgado, R.L.; Gomez-Ambrosio, R.; Martinez-Martin, J.; Salas-Bernardez, A.; Sanz-Cillero, J.J.
Title Production of two, three, and four Higgs bosons: where SMEFT and HEFT depart Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages (down) 037 - 45pp
Keywords Anomalous Higgs Couplings; Higgs Properties; Strongly Interacting Higgs; Electroweak Precision Physics
Abstract In this article we study the phenomenological implications of multiple Higgs boson production from longitudinal vector boson scattering in the context of effective field theories. We find compact representations for effective tree-level amplitudes with up to four final state Higgs bosons. Total cross sections are then computed for scenarios relevant at the LHC in which we find the general Higgs Effective Theory (HEFT) prediction avoids the heavy suppression observed in Standard Model Effective Field Theory (SMEFT).
Address [Delgado, Rafael L.] Univ Politecn Madrid, Dept Matemat Aplicadas TIC, Nikola Tesla,s-n, Madrid 28031, Spain, Email: rafael.delgado@upm.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001177947600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6013
Permanent link to this record
 

 
Author Blennow, M.; Fernandez-Martinez, E.; Hernandez-Garcia, J.; Lopez-Pavon, J.; Marcano, X.; Naredo-Tuero, D.
Title Bounds on lepton non-unitarity and heavy neutrino mixing Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages (down) 030 - 41pp
Keywords Electroweak Precision Physics; Neutrino Mixing; Sterile or Heavy Neutrinos
Abstract We present an updated and improved global fit analysis of current flavour and electroweak precision observables to derive bounds on unitarity deviations of the leptonic mixing matrix and on the mixing of heavy neutrinos with the active flavours. This new analysis is motivated by new and updated experimental results on key observables such as V-ud, the invisible decay width of the Z boson and the W boson mass. It also improves upon previous studies by considering the full correlations among the different observables and explicitly calibrating the test statistic, which may present significant deviations from a & chi;(2) distribution. The results are provided for three different Type-I seesaw scenarios: the minimal scenario with only two additional right-handed neutrinos, the next to minimal one with three extra neutrinos, and the most general one with an arbitrary number of heavy neutrinos that we parametrise via a generic deviation from a unitary leptonic mixing matrix. Additionally, we also analyze the case of generic deviations from unitarity of the leptonic mixing matrix, not necessarily induced by the presence of additional neutrinos. This last case relaxes some correlations among the parameters and is able to provide a better fit to the data. Nevertheless, inducing only leptonic unitarity deviations avoiding both the correlations implied by the right-handed neutrino extension as well as more strongly constrained operators is challenging and would imply significantly more complex UV completions.
Address [Blennow, Mattias] KTH Royal Inst Technol, AlbaNova Univ Ctr, Sch Engn Sci, Dept Phys, Roslagstullsbacken 21, S-10691 Stockholm, Sweden, Email: emb@kth.se;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001044930400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5607
Permanent link to this record