|   | 
Details
   web
Records
Author MoEDAL Collaboration (Acharya, B. et al); Bernabeu, J.; Garcia, C.; King, M.; Mitsou, V.A.; Vento, V.; Vives, O.
Title The physics programme of the MoEDAL experiment at the LHC Type Journal Article
Year 2014 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 29 Issue 23 Pages (down) 1430050 - 91pp
Keywords MoEDAL; LHC magnetic monopole; monopolium; dyons; (pseudo-)stable massive charged particle; supersymmetry; technicolor; extra dimensions; dark matter; doubly charged particles; highly ionizing particles; physics beyond the Standard Model
Abstract The MoEDAL experiment at Point 8 of the LHC ring is the seventh and newest LHC experiment. It is dedicated to the search for highly-ionizing particle avatars of physics beyond the Standard Model, extending significantly the discovery horizon of the LHC. A MoEDAL discovery would have revolutionary implications for our fundamental understanding of the Microcosm. MoEDAL is an unconventional and largely passive LHC detector comprised of the largest array of Nuclear Track Detector stacks ever deployed at an accelerator, surrounding the intersection region at Point 8 on the LHC ring. Another novel feature is the use of paramagnetic trapping volumes to capture both electrically and magnetically charged highly-ionizing particles predicted in new physics scenarios. It includes an array of TimePix pixel devices for monitoring highly-ionizing particle backgrounds. The main passive elements of the MoEDAL detector do not require a trigger system, electronic readout, or online computerized data acquisition. The aim of this paper is to give an overview of the MoEDAL physics reach, which is largely complementary to the programs of the large multipurpose LHC detectors ATLAS and CMS.
Address [Acharya, B.; Alexandre, J.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: jpinfold@ualberta.ca
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000342220300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1950
Permanent link to this record
 

 
Author Calefice, L.; Hennequin, A.; Henry, L.; Jashal, B.K.; Mendoza, D.; Oyanguren, A.; Sanderswood, I.; Sierra, C.V.; Zhuo, J.H.
Title Effect of the high-level trigger for detecting long-lived particles at LHCb Type Journal Article
Year 2022 Publication Frontiers in Big Data Abbreviated Journal Front. Big Data
Volume 5 Issue Pages (down) 1008737 - 13pp
Keywords LHCb; trigger; real time analysis; long-lived particles; GPU; SciFi; beyond standard physics
Abstract Long-lived particles (LLPs) show up in many extensions of the Standard Model, but they are challenging to search for with current detectors, due to their very displaced vertices. This study evaluated the ability of the trigger algorithms used in the Large Hadron Collider beauty (LHCb) experiment to detect long-lived particles and attempted to adapt them to enhance the sensitivity of this experiment to undiscovered long-lived particles. A model with a Higgs portal to a dark sector is tested, and the sensitivity reach is discussed. In the LHCb tracking system, the farthest tracking station from the collision point is the scintillating fiber tracker, the SciFi detector. One of the challenges in the track reconstruction is to deal with the large amount of and combinatorics of hits in the LHCb detector. A dedicated algorithm has been developed to cope with the large data output. When fully implemented, this algorithm would greatly increase the available statistics for any long-lived particle search in the forward region and would additionally improve the sensitivity of analyses dealing with Standard Model particles of large lifetime, such as KS0 or Lambda (0) hadrons.
Address [Calefice, Lukas] Sorbonne Univ, Lab Phys Nucl & Hautes Energies, CNRS, IN2P3, Paris, France, Email: arantza.oyanguren@ific.uv.es
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000889005000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5423
Permanent link to this record
 

 
Author Bonilla, J. et al; Vos, M.
Title Jets and Jet Substructure at Future Colliders Type Journal Article
Year 2022 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume 10 Issue Pages (down) 897719 - 17pp
Keywords jets; jet substructure; collider; artificial intelligence; machine learning; snowmass; top quark; Higgs boson
Abstract Even though jet substructure was not an original design consideration for the Large Hadron Collider (LHC) experiments, it has emerged as an essential tool for the current physics program. We examine the role of jet substructure on the motivation for and design of future energy Frontier colliders. In particular, we discuss the need for a vibrant theory and experimental research and development program to extend jet substructure physics into the new regimes probed by future colliders. Jet substructure has organically evolved with a close connection between theorists and experimentalists and has catalyzed exciting innovations in both communities. We expect such developments will play an important role in the future energy Frontier physics program.
Address [Bonilla, Johan; Erbacher, Robin] Univ Calif, Dept Phys & Astron, Davis, CA USA, Email: bpnachman@lbl.gov;
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000822618100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5464
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C.
Title Search for the doubly charmed baryon Xi(+)(cc) Type Journal Article
Year 2020 Publication Science China-Physics Mechanics & Astronomy Abbreviated Journal Sci. China-Phys. Mech. Astron.
Volume 63 Issue 2 Pages (down) 221062 - 15pp
Keywords charmed baryons; limits on production of particles; charmed quarks; experimental tests
Abstract A search for the doubly charmed baryon.+ cc is performed through its decay to the.+ c K- p+ final state, using proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7, 8 and 13 TeV. The data correspond to a total integrated luminosity of 9 fb-1. No significant signal is observed in the mass range from 3.4 to 3.8 GeV/c2. Upper limits are set at 95% credibility level on the ratio of the.+ cc production cross-section times the branching fraction to that of.+ c and.++ cc baryons. The limits are determined as functions of the.+ cc mass for di fferent lifetime hypotheses, in the rapidity range from 2.0 to 4.5 and the transverse momentum range from 4 to 15 GeV/c.
Address [Bediaga, I.; Cruz Torres, M.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; dos Reis, A. C.; Soares Lavra, L.; Tourinho Jadallah Aoude, R.] CBPF, Rio De Janeiro, Brazil, Email: maria.vieites.diaz@cern.ch
Corporate Author Thesis
Publisher Science Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-7348 ISBN Medium
Area Expedition Conference
Notes WOS:000526889100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4376
Permanent link to this record
 

 
Author An, L.; Auffray, E.; Betti, F.; Dall'Omo, F.; Gascon, D.; Golutvin, A.; Guz, Y.; Kholodenko, S.; Martinazzoli, L.; Mazorra de Cos, J.; Picatoste, E.; Pizzichemi, M.; Roloff, P.; Salomoni, M.; Sanchez, D.; Schopper, A.; Semennikov, A.; Shatalov, P.; Shmanin, E.; Strekalina, D.; Zhang, Y.
Title Performance of a spaghetti calorimeter prototype with tungsten absorber and garnet crystal fibres Type Journal Article
Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1045 Issue Pages (down) 167629 - 7pp
Keywords Calorimetry; High energy physics (HEP); Particle detectors; Spaghetti calorimeter (SPACAL); Fibres; Scintillating crystals
Abstract A spaghetti calorimeter (SPACAL) prototype with scintillating crystal fibres was assembled and tested with electron beams of energy from 1 to 5 GeV. The prototype comprised radiation-hard Cerium-doped Gd3Al2Ga3O12 (GAGG:Ce) and Y3Al5O12 (YAG:Ce) embedded in a pure tungsten absorber. The energy resolution root was studied as a function of the incidence angle of the beam and found to be of the order of 10%/ E a 1%, in line with the LHCb Shashlik technology. The time resolution was measured with metal channel dynode photomultipliers placed in contact with the fibres or coupled via a light guide, additionally testing an optical tape to glue the components. Time resolution of a few tens of picosecond was achieved for all the energies reaching down to (18.5 +/- 0.2) ps at 5 GeV.
Address [An, L.; Auffray, E.; Betti, F.; Dall'Omo, F.; Martinazzoli, L.; Pizzichemi, M.; Roloff, P.; Salomoni, M.; Schopper, A.] European Org Nucl Res CERN, Geneva, Switzerland, Email: loris.martinazzoli@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000882335600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5413
Permanent link to this record