toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Robert, C.; Dedes, G.; Battistoni, G.; Bohlen, T.T.; Buvat, I.; Cerutti, F.; Chin, M.P.W.; Ferrari, A.; Gueth, P.; Kurz, C.; Lestand, L.; Mairani, A.; Montarou, G.; Nicolini, R.; Ortega, P.G.; Parodi, K.; Prezado, Y.; Sala, P.R.; Sarrut, D.; Testa, E. doi  openurl
  Title Distributions of secondary particles in proton and carbon-ion therapy: a comparison between GATE/Geant4 and FLUKA Monte Carlo codes Type Journal Article
  Year 2013 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 58 Issue 9 Pages (down) 2879-2899  
  Keywords  
  Abstract Monte Carlo simulations play a crucial role for in-vivo treatment monitoring based on PET and prompt gamma imaging in proton and carbon-ion therapies. The accuracy of the nuclear fragmentation models implemented in these codes might affect the quality of the treatment verification. In this paper, we investigate the nuclear models implemented in GATE/Geant4 and FLUKA by comparing the angular and energy distributions of secondary particles exiting a homogeneous target of PMMA. Comparison results were restricted to fragmentation of O-16 and C-12. Despite the very simple target and set-up, substantial discrepancies were observed between the two codes. For instance, the number of high energy (>1 MeV) prompt gammas exiting the target was about twice as large with GATE/Geant4 than with FLUKA both for proton and carbon ion beams. Such differences were not observed for the predicted annihilation photon production yields, for which ratios of 1.09 and 1.20 were obtained between GATE and FLUKA for the proton beam and the carbon ion beam, respectively. For neutrons and protons, discrepancies from 14% (exiting protons-carbon ion beam) to 57% (exiting neutrons-proton beam) have been identified in production yields as well as in the energy spectra for neutrons.  
  Address Univ Paris 07, IMNC, CNRS, UMR 8165, F-91406 Orsay, France, Email: robert@imnc.in2p3.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000317579900010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1407  
Permanent link to this record
 

 
Author Ancilotto, F.; Barranco, M.; Navarro, J.; Pi, M. doi  openurl
  Title Cavitation of electron bubbles in liquid parahydrogen Type Journal Article
  Year 2011 Publication Molecular Physics Abbreviated Journal Mol. Phys.  
  Volume 109 Issue 23-24 Pages (down) 2757-2762  
  Keywords liquid parahydrogen; electron bubbles; density functional theory; capillary approximation  
  Abstract Within a finite-temperature density functional approach, we have investigated the structure of electron bubbles in liquid parahydrogen below the saturated vapour pressure, determining the critical pressure at which electron bubbles explode as a function of temperature. The electron-parahydrogen interaction has been modelled by a Hartree-type local potential fitted to the experimental value of the conduction band-edge for a delocalized electron in pH(2). We have found that the pressure for bubble explosion is, in absolute value, about a factor of two smaller than that of the homogeneous cavitation pressure in the liquid. Comparison with the results obtained within the capillary model shows the limitations of this approximation, especially as temperature increases.  
  Address [Barranco, Manuel; Pi, Marti] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain, Email: manuel@ecm.ub.es  
  Corporate Author Thesis  
  Publisher Taylor & Francis Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-8976 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000299109300007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 930  
Permanent link to this record
 

 
Author Gillam, J.E.; Solevi, P.; Oliver, J.F.; Rafecas, M. doi  openurl
  Title Simulated one-pass list-mode: an approach to on-the-fly system matrix calculation Type Journal Article
  Year 2013 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 58 Issue 7 Pages (down) 2377-2394  
  Keywords  
  Abstract In the development of prototype systems for positron emission tomography a valid and robust image reconstruction algorithm is required. However, prototypes often employ novel detector and system geometries which may change rapidly under optimization. In addition, developing systems generally produce highly granular, or possibly continuous detection domains which require some level of on-the-fly calculation for retention of measurement precision. In this investigation a new method of on-the-fly system matrix calculation is proposed that provides advantages in application to such list-mode systems in terms of flexibility in system modeling. The new method is easily adaptable to complicated system geometries and available computational resources. Detection uncertainty models are used as random number generators to produce ensembles of possible photon trajectories at image reconstruction time for each datum in the measurement list. However, the result of this approach is that the system matrix elements change at each iteration in a non-repetitive manner. The resulting algorithm is considered the simulation of a one-pass list (SOPL) which is generated and the list traversed during image reconstruction. SOPL alters the system matrix in use at each iteration and so behavior within the maximum likelihood-expectation maximization algorithm was investigated. A two-pixel system and a small two dimensional imaging model are used to illustrate the process and quantify aspects of the algorithm. The two-dimensional imaging system showed that, while incurring a penalty in image resolution, in comparison to a non-random equal-computation counterpart, SOPL provides much enhanced noise properties. In addition, enhancement in system matrix quality is straightforward (by increasing the number of samples in the ensemble) so that the resolution penalty can be recovered when desired while retaining improvement in noise properties. Finally the approach is tested and validated against a standard (highly accurate) system matrix using experimental data from a prototype system-the AX-PET.  
  Address [Gillam, J. E.; Solevi, P.; Oliver, J. F.; Rafecas, M.] Univ Valencia, CSIC, IFIC, Inst Fis Corpuscular, Valencia, Spain, Email: john.gillam@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000316181300024 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1370  
Permanent link to this record
 

 
Author Balbinot, R.; Carusotto, I.; Fabbri, A.; Recati, A. url  doi
openurl 
  Title Testing Hawking Particle Creation By Black Holes Through Correlation Measurements Type Journal Article
  Year 2010 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D  
  Volume 19 Issue 14 Pages (down) 2371-2377  
  Keywords  
  Abstract Hawking's prediction of thermal radiation by black holes has been shown by Unruh to be expected also in condensed matter systems. We show here that in a black hole-like configuration realized in a BEC this particle-creation does indeed take place and can be unambiguously identified via a characteristic pattern in the density-density correlations. This opens the concrete possibility of the experimental verification of this effect.  
  Address [Balbinot, R.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy, Email: balbinot@bo.infn.it  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-2718 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286112000022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 534  
Permanent link to this record
 

 
Author Baker, M.J.; Bordes, J.; Hong-Mo, C.; Tsun, T.S. url  doi
openurl 
  Title Mass Hierarchy, Mixing, CP-Violation And Higgs Decay – Or Why Rotation Is Good For Us Type Journal Article
  Year 2011 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 26 Issue 13 Pages (down) 2087-2124  
  Keywords Quark and lepton mixing; mass hierarchy; CP violation; rotation  
  Abstract The idea of a rank-one rotating mass matrix (R2M2) is reviewed detailing how it leads to ready explanations both for the fermion mass hierarchy and for the distinctive mixing patterns between up and down fermion states, which can be and have been tested against experiment and shown to be fully consistent with existing data. Further, R2M2 is seen to offer, as by-products: (i) a new solution to the strong CP problem in QCD by linking the theta-angle there to the Kobayashi-Maskawa CP-violating phase in the CKM matrix, and (ii) some novel predictions of possible anomalies in Higgs decay observable in principle at the LHC. A special effort is made to answer some questions raised.  
  Address [Baker, Michael J.; Tsun, Tsou Sheung] Univ Oxford, Inst Math, Oxford OX1 3LB, England, Email: bakerm@maths.ox.ac.uk  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291219600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 643  
Permanent link to this record
 

 
Author Granero, D.; Candela-Juan, C.; Vijande, J.; Ballester, F.; Perez-Calatayud, J.; Jacob, D.; Mourtada, F. doi  openurl
  Title Technical Note: Dosimetry of Leipzig and Valencia applicators without the plastic cap Type Journal Article
  Year 2016 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 43 Issue 5 Pages (down) 2087 - 4pp  
  Keywords Leipzig applicators; Valencia applicators; skin brachytherapy; Monte Carlo; dosimetry  
  Abstract Purpose: High dose rate (HDR) brachytherapy for treatment of small skin lesions using the Leipzig and Valencia applicators is a widely used technique. These applicators are equipped with an attachable plastic cap to be placed during fraction delivery to ensure electronic equilibrium and to prevent secondary electrons from reaching the skin surface. The purpose of this study is to report on the dosimetric impact of the cap being absent during HDR fraction delivery, which has not been explored previously in the literature. Methods: GEANT4 Monte Carlo simulations (version 10.0) have been performed for the Leipzig and Valencia applicators with and without the plastic cap. In order to validate the Monte Carlo simulations, experimental measurements using radiochromic films have been done. Results: Dose absorbed within 1 mm of the skin surface increases by a factor of 1500% for the Leipzig applicators and of 180% for the Valencia applicators. Deeper than 1 mm, the overdosage flattens up to a 10% increase. Conclusions: Differences of treating with or without the plastic cap are significant. Users must check always that the plastic cap is in place before any treatment in order to avoid overdosage of the skin. Prior to skin HDR fraction delivery, the timeout checklist should include verification of the cap placement. (C) 2016 American Association of Physicists in Medicine.  
  Address [Granero, D.] Hosp Gen Univ, Dept Radiat Phys, ERESA, Valencia 46014, Spain, Email: dgranero@eresa.com  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000378924200010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2753  
Permanent link to this record
 

 
Author Fioresi, R.; Latini, E.; Lledo, M.A.; Nadal, F.A. url  doi
openurl 
  Title The Segre embedding of the quantum conformal superspace Type Journal Article
  Year 2018 Publication Advances in Theoretical and Mathematical Physics Abbreviated Journal Adv. Theor. Math. Phys.  
  Volume 22 Issue 8 Pages (down) 1939-2000  
  Keywords  
  Abstract In this paper we study the quantum deformation of the superflag Fl(2 vertical bar 0, 2 vertical bar 1, 4 vertical bar 1), and its big cell, describing the complex conformal and Minkowski superspaces respectively. In particular, we realize their projective embedding via a generalization to the super world of the Segre map and we use it to construct a quantum deformation of the super line bundle realizing this embedding. This strategy allows us to obtain a description of the quantum coordinate superring of the superflag that is then naturally equipped with a coaction of the quantum complex conformal supergroup SLq (4 vertical bar 1).  
  Address [Fioresi, R.; Latini, E.] Univ Bologna, Dipartimento Matemat, Piazza Porta S Donato 5, I-40126 Bologna, Italy, Email: rita.fioresi@UniBo.it;  
  Corporate Author Thesis  
  Publisher Int Press Boston, Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1095-0761 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000475480800004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4102  
Permanent link to this record
 

 
Author Piersanti, L.; Bellini, F.; Bini, F.; Collamati, F.; De Lucia, E.; Durante, M.; Faccini, R.; Ferroni, F.; Fiore, S.; Iarocci, E.; La Tessa, C.; Marafini, M.; Mattei, I.; Patera, V.; Ortega, P.G.; Sarti, A.; Schuy, C.; Sciubba, A.; Vanstalle, M.; Voena, C. doi  openurl
  Title Measurement of charged particle yields from PMMA irradiated by a 220 MeV/u C-12 beam Type Journal Article
  Year 2014 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 59 Issue 7 Pages (down) 1857-1872  
  Keywords drift chamber; LYSO; hadrontherapy; carbon ion beam; dose monitoring  
  Abstract The radiation used in hadrontherapy treatments interacts with the patient body producing secondary particles, either neutral or charged, that can be used for dose and Bragg peak monitoring and to provide a fast feedback on the treatment plans. Recent results obtained from the authors on simplified setups (mono-energetic primary beams interacting with homogeneous tissue like target) have already indicated the correlation that exists between the flux of these secondaries coming from the target (e.g. protons and photons) and the position of the primary beam Bragg peak. In this paper, the measurements of charged particle fluxes produced by the interaction of a 220 MeV/u carbon ion beam at GSI, Darmstadt, with a polymethyl methacrylate target are reported. The emission region of protons (p), deuterons (d) and tritons (t) has been characterized using a drift chamber while the particle time-of-flight, used to compute the kinetic energy spectra, was measured with a LYSO scintillator.The energy released in the LYSO crystal was used for particle identification purposes. The measurements were repeated with the setup at 60 degrees and 90 degrees with respect to the primary beam direction. The accuracy on the fragments emission profile reconstruction and its relationship with the Bragg peak position have been studied. Based on the acquired experimental evidence, a method to monitor the dose profile and the position of the Bragg peak inside the target is proposed.  
  Address [Piersanti, L.; De Lucia, E.; Iarocci, E.; Mattei, I.; Sarti, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy, Email: vincenzo.patera@lnf.infn.it  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000333186200020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1735  
Permanent link to this record
 

 
Author Ortega, P.G.; Torres-Espallardo, I.; Cerutti, F.; Ferrari, A.; Gillam, J.E.; Lacasta, C.; Llosa, G.; Oliver, J.F.; Sala, P.R.; Solevi, P.; Rafecas, M. doi  openurl
  Title Noise evaluation of Compton camera imaging for proton therapy Type Journal Article
  Year 2015 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 60 Issue 5 Pages (down) 1845-1863  
  Keywords proton therapy; Compton camera; Monte Carlo methods; FLUKA; prompt gamma; range verification; MLEM  
  Abstract Compton Cameras emerged as an alternative for real-time dose monitoring techniques for Particle Therapy (PT), based on the detection of prompt-gammas. As a consequence of the Compton scattering process, the gamma origin point can be restricted onto the surface of a cone (Compton cone). Through image reconstruction techniques, the distribution of the gamma emitters can be estimated, using cone-surfaces backprojections of the Compton cones through the image space, along with more sophisticated statistical methods to improve the image quality. To calculate the Compton cone required for image reconstruction, either two interactions, the last being photoelectric absorption, or three scatter interactions are needed. Because of the high energy of the photons in PT the first option might not be adequate, as the photon is not absorbed in general. However, the second option is less efficient. That is the reason to resort to spectral reconstructions, where the incoming. energy is considered as a variable in the reconstruction inverse problem. Jointly with prompt gamma, secondary neutrons and scattered photons, not strongly correlated with the dose map, can also reach the imaging detector and produce false events. These events deteriorate the image quality. Also, high intensity beams can produce particle accumulation in the camera, which lead to an increase of random coincidences, meaning events which gather measurements from different incoming particles. The noise scenario is expected to be different if double or triple events are used, and consequently, the reconstructed images can be affected differently by spurious data. The aim of the present work is to study the effect of false events in the reconstructed image, evaluating their impact in the determination of the beam particle ranges. A simulation study that includes misidentified events (neutrons and random coincidences) in the final image of a Compton Telescope for PT monitoring is presented. The complete chain of detection, from the beam particle entering a phantom to the event classification, is simulated using FLUKA. The range determination is later estimated from the reconstructed image obtained from a two and three-event algorithm based on Maximum Likelihood Expectation Maximization. The neutron background and random coincidences due to a therapeutic-like time structure are analyzed for mono-energetic proton beams. The time structure of the beam is included in the simulations, which will affect the rate of particles entering the detector.  
  Address [Ortega, P. G.; Cerutti, F.; Ferrari, A.] CERN European Org Nucl Res, CH-1217 Meyrin, Switzerland, Email: pgarciao@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000349530700009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2115  
Permanent link to this record
 

 
Author Cabello, J.; Rafecas, M. doi  openurl
  Title Comparison of basis functions for 3D PET reconstruction using a Monte Carlo system matrix Type Journal Article
  Year 2012 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 57 Issue 7 Pages (down) 1759-1777  
  Keywords  
  Abstract In emission tomography, iterative statistical methods are accepted as the reconstruction algorithms that achieve the best image quality. The accuracy of these methods relies partly on the quality of the system response matrix (SRM) that characterizes the scanner. The more physical phenomena included in the SRM, the higher the SRM quality, and therefore higher image quality is obtained from the reconstruction process. High-resolution small animal scanners contain as many as 10(3)-10(4) small crystal pairs, while the field of view (FOV) is divided into hundreds of thousands of small voxels. These two characteristics have a significant impact on the number of elements to be calculated in the SRM. Monte Carlo (MC) methods have gained popularity as a way of calculating the SRM, due to the increased accuracy achievable, at the cost of introducing some statistical noise and long simulation times. In the work presented here the SRM is calculated using MC methods exploiting the cylindrical symmetries of the scanner, significantly reducing the simulation time necessary to calculate a high statistical quality SRM and the storage space necessary. The use of cylindrical symmetries makes polar voxels a convenient basis function. Alternatively, spherically symmetric basis functions result in improved noise properties compared to cubic and polar basis functions. The quality of reconstructed images using polar voxels, spherically symmetric basis functions on a polar grid, cubic voxels and post-reconstruction filtered polar and cubic voxels is compared from a noise and spatial resolution perspective. This study demonstrates that polar voxels perform as well as cubic voxels, reducing the simulation time necessary to calculate the SRM and the disk space necessary to store it. Results showed that spherically symmetric functions outperform polar and cubic basis functions in terms of noise properties, at the cost of slightly degraded spatial resolution, larger SRM file size and longer reconstruction times. However, we demonstrate that post-reconstruction smoothing, usually applied in emission imaging to reduce the level of noise, can produce a spatial resolution degradation of similar to 50%, while spherically symmetric basis functions produce a degradation of only similar to 6%, compared to polar and cubic voxels, at the same noise level. Therefore, the image quality trade-off obtained with blobs is higher than that obtained with cubic or polar voxels.  
  Address [Cabello, Jorge; Rafecas, Magdalena] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia, Spain, Email: jorge.cabello@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000302121000004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 955  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva