Boggia, M., Cruz-Martinez, J. M., Frellesvig, H., Glover, N., Gomez-Ambrosio, R., Gonella, G., et al. (2018). The HiggsTools handbook: a beginners guide to decoding the Higgs sector. J. Phys. G, 45(6), 065004–152pp.
Abstract: This report summarises some of the activities of the HiggsTools initial training network working group in the period 2015-2017. The main goal of this working group was to produce a document discussing various aspects of state-of-the-art Higgs physics at the large hadron collider (LHC) in a pedagogic manner The first part of the report is devoted to a description of phenomenological searches for new physics (NP) at the LHC. All of the available studies of the couplings of the new resonance discovered in 2012 by the ATLAS and CMS experiments (Aad et al (ATLAS Collaboration) 2012 Phys. Lett. B 716 1-29; Chatrchyan et al (CMS Collaboration) 2012 Phys. Lett. B 716 30-61) conclude that it is compatible with the Higgs boson of the standard model (SM) within present precision. So far the LHC experiments have given no direct evidence for any physical phenomena that cannot be described by the SM. As the experimental measurements become more and more precise, there is a pressing need for a consistent framework in which deviations from the SM predictions can be computed precisely. Such a framework should be applicable to measurements in all sectors of particle physics, not only LHC Higgs measurements but also electroweak precision data, etc. We critically review the use of the k-framework, fiducial and simplified template cross sections, effective field theories, pseudoobservables and phenomenological Lagrangians. Some of the concepts presented here are well known and were used already at the time of the large electron-positron collider (LEP) experiment. However, after years of theoretical and experimental development, these techniques have been refined, and we describe new tools that have been introduced in order to improve the comparison between theory and experimental data. In the second part of the report, we propose Phi(eta)* as a new and complementary observable for studying Higgs boson production at large transverse momentum in the case where the Higgs boson decays to two photons. The Phi(eta)* variable depends on measurements of the angular directions and rapidities of the two Higgs decay products rather than the energies, and exploits the information provided by the calorimeter in the detector. We show that, even without tracking information, the experimental resolution for Phi(eta)* is better than that of the transverse momentum of the photon pair, particularly at low transverse momentum. We make a detailed study of the phenomenology of the Phi(eta)* variable, contrasting the behaviour with the Higgs transverse momentum distribution using a variety of theoretical tools including event generators and fixed order perturbative computations. We consider the theoretical uncertainties associated with both p TH and Phi(eta)* distributions. Unlike the transverse momentum distribution, the Phi(eta)* distribution is well predicted using the Higgs effective field theory in which the top quark is integrated out-even at large values of Phi(eta)*-thereby making this a better observable for extracting the parameters of the Higgs interaction. In contrast, the potential of the Phi(eta)* distribution as a probe of NP is rather limited, since although the overall rate is affected by the presence of additional heavy fields, the shape of the Phi(eta)* distribution is relatively insensitive to heavy particle thresholds.
|
Lesgourgues, J., & Pastor, S. (2014). Neutrino cosmology and Planck. New J. Phys., 16, 065002–24pp.
Abstract: Relic neutrinos play an important role in the evolution of the Universe, modifying some of the cosmological observables. We summarize the main aspects of cosmological neutrinos and describe how the precision of present cosmological data can be used to learn about neutrino properties. In particular, we discuss how cosmology provides information on the absolute scale of neutrino masses, complementary to beta decay and neutrinoless double-beta decay experiments. We explain why the combination of Planck temperature data with measurements of the baryon acoustic oscillation angular scale provides a strong bound on the sum of neutrino masses, 0.23 eV at the 95% confidence level, while the lensing potential spectrum and the cluster mass function measured by Planck are compatible with larger values. We also review the constraints from current data on other neutrino properties. Finally, we describe the very good perspectives from future cosmological measurements, which are expected to be sensitive to neutrino masses close to the minimum values guaranteed by flavour oscillations.
|
Bonilla, C., Sokolowska, D., Darvishi, N., Diaz-Cruz, J. L., & Krawczyk, M. (2016). IDMS: inert dark matter model with a complex singlet. J. Phys. G, 43(6), 065001–39pp.
Abstract: We study an extension of the inert doublet model (IDM) that includes an extra complex singlet of the scalars fields, which we call the IDMS. In this model there are three Higgs particles, among them a SM-like Higgs particle, and the lightest neutral scalar, from the inert sector, remains a viable dark matter (DM) candidate. We assume a non-zero complex vacuum expectation value for the singlet, so that the visible sector can introduce extra sources of CP violation. We construct the scalar potential of IDMS, assuming an exact Z(2) symmetry, with the new singlet being Z(2)-even, as well as a softly broken U(1) symmetry, which allows a reduced number of free parameters in the potential. In this paper we explore the foundations of the model, in particular the masses and interactions of scalar particles for a few benchmark scenarios. Constraints from collider physics, in particular from the Higgs signal observed at the Large Hadron Collider with M-h approximate to 125 GeV, as well as constraints from the DM experiments, such as relic density measurements and direct detection limits, are included in the analysis. We observe significant differences with respect to the IDM in relic density values from additional annihilation channels, interference and resonance effects due to the extended Higgs sector.
|
Wang, Y. F., Yao, D. L., & Zheng, H. Q. (2019). New insights on low energy pi N scattering amplitudes: comprehensive analyses at O (p(3)) level. Chin. Phys. C, 43(6), 064110–22pp.
Abstract: A production representation of partial-wave S matrix is utilized to construct low-energy elastic pion-nucleon scattering amplitudes from cuts and poles on complex Riemann sheets. Among them, the contribution of left-hand cuts is estimated using the O (p(3)) results obtained in covariant baryon chiral perturbation theory within the extendedon-nass-shell scheme. By fitting to data on partial-wave phase shifts, it is indicated that the existences of hidden poles in S-11 and P-11 channels, as conjectured in our previous paper [Eur. Phys. J. C, 78(7): 543 (2018)], are firmly established. Specifically, the pole mass of the S-11 hidden resonance is determined to be (895 +/- 81)-(164 +/- 23)i MeV, whereas, the virtual pole in the P-11 channel locates at (966 +/- 18) MeV. It is found that analyses at the O (p(3)) level improves significantly the fit quality, comparing with the previous O (p(2)) one. Quantitative studies with cautious physical discussions are also conducted for the other S- and P-wave channels.
|
Dias, J. M., Yu, Q. X., Liang, W. H., Sun, Z. F., Xie, J. J., & Oset, E. (2020). Xi(bb) and Omega(bbb) molecular states. Chin. Phys. C, 44(6), 064101–8pp.
Abstract: Using the vector exchange interaction in the local hidden gauge approach, which in the light quark sector generates the chiral Lagrangians and has produced realistic results for Omega(C), Xi(c), Xi(b) and the hidden charm pentaquark states, we study the meson-baryon interactions in the coupled channels that lead to the Xi(bb) and Omega(bbb) excited states of the molecular type. We obtain seven states of the Xi(bb) type with energies between and MeV, and one Omega(bbb) state at MeV.
|
Pakarinen, J. et al, & Algora, A. (2017). Collectivity in Pb-196, Pb-198 isotopes probed in Coulomb-excitation experiments at REX-ISOLDE. J. Phys. G, 44(6), 064009–10pp.
Abstract: The neutron-deficient Pb-196,Pb-198 isotopes have been studied in Coulomb-excitation experiments employing the Miniball gamma-ray spectrometer and radioactive ion beams from the REX-ISOLDE post-accelerator at CERN. The reduced transition probabilities of the first excited 2(+) states in Pb-196 and Pb-198 nuclei have been measured for the first time. Values of B (E2) = 18.2(-4.1)(+4.8) W. u. and B (E2) = 13.1(-3.5)(+4.9) W. u., were obtained, respectively. The experiment sheds light on the development of collectivity when moving from the regime governed by the generalised seniority scheme to a region, where intruding structures, associated with different deformed shapes, start to come down in energy and approach the spherical ground state.
|
Schwetz, T., Tortola, M., & Valle, J. W. F. (2011). Global neutrino data and recent reactor fluxes: the status of three-flavour oscillation parameters. New J. Phys., 13, 063004–15pp.
Abstract: We present the results of a global neutrino oscillation data analysis within the three-flavour framework. We include the latest results from the MINOS long-baseline experiment (including electron neutrino appearance and anti-neutrino data), updating all relevant solar (Super-Kamiokande (SK) II + III), atmospheric (SK I + II + III) and reactor (KamLAND) data. Furthermore, we include a recent re-calculation of the anti-neutrino fluxes emitted from nuclear reactors. These results have important consequences for the analysis of reactor experiments and in particular for the status of the mixing angle theta(13). In our recommended default analysis, we find from the global fit that the hint for nonzero theta(13) remains weak, at 1.8 sigma for both neutrino mass hierarchy schemes. However, we discuss in detail the dependence of these results on assumptions regarding the reactor neutrino analysis.
|
Altheimer, A. et al, Villaplana Perez, M., & Vos, M. (2012). Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarks. J. Phys. G, 39(6), 063001–44pp.
Abstract: In this paper, we review recent theoretical progress and the latest experimental results in jet substructure from the Tevatron and the LHC. We review the status of and outlook for calculation and simulation tools for studying jet substructure. Following up on the report of the Boost 2010 workshop, we present a new set of benchmark comparisons of substructure techniques, focusing on the set of variables and grooming methods that are collectively known as 'top taggers'. To facilitate further exploration, we have attempted to collect, harmonize and publish software implementations of these techniques.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Bouchhar, N., Cabrera Urban, S., Cantero, J., et al. (2025). Measurement of off-shell Higgs boson production in the H*→ZZ→4l decay channel using a neural simulation-based inference technique in 13 TeV pp collisions with the ATLAS detector. Rep. Prog. Phys., 88(5), 057803–38pp.
Abstract: A measurement of off-shell Higgs boson production in the H*-> ZZ -> 4l decay channel is presented. The measurement uses 140 fb-1 of proton-proton collisions at s=13 TeV collected by the ATLAS detector at the Large Hadron Collider and supersedes the previous result in this decay channel using the same dataset. The data analysis is performed using a neural simulation-based inference method, which builds per-event likelihood ratios using neural networks. The observed (expected) off-shell Higgs boson production signal strength in the ZZ -> 4l decay channel at 68% CL is 0.87-0.54+0.75 ( 1.00-0.95+1.04). The evidence for off-shell Higgs boson production using the ZZ -> 4l decay channel has an observed (expected) significance of 2.5 sigma (1.3 sigma). The expected result represents a significant improvement relative to that of the previous analysis of the same dataset, which obtained an expected significance of 0.5 sigma. When combined with the most recent ATLAS measurement in the ZZ -> 2l2 nu decay channel, the evidence for off-shell Higgs boson production has an observed (expected) significance of 3.7 sigma (2.4 sigma). The off-shell measurements are combined with the measurement of on-shell Higgs boson production to obtain constraints on the Higgs boson total width. The observed (expected) value of the Higgs boson width at 68% CL is 4.3-1.9+2.7 ( 4.1-3.4+3.5) MeV.
|
Rinaldi, M., & Vento, V. (2020). Pure glueball states in a light-front holographic approach. J. Phys. G, 47(5), 055104–12pp.
Abstract: A phenomenological analysis of the scalar glueball and scalar meson spectra is carried out by using the AdS/QCD framework in the bottom-up approach. The resulting spectra are in good agreement for glueballs with lattice QCD results and for mesons with PDG data. We make use of the relation between the mode functions in AdS/QCD and the wave functions in Light-Front QCD to discuss the mixing of glueballs and mesons. The results of our investigation point out that above 2 GeV scalar particles will appear in almost degenerate pairs of unmixed glueball and mesons states leading to an interesting phenomenology whereby gluon dynamics could be well investigated.
|