|   | 
Details
   web
Records
Author Servant, G.; Simakachorn, P.
Title Ultrahigh frequency primordial gravitational waves beyond the kHz: The case of cosmic strings Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 10 Pages (down) 103538 - 24pp
Keywords
Abstract We investigate gravitational -wave backgrounds (GWBs) of primordial origin that would manifest only at ultrahigh frequencies, from kilohertz to 100 gigahertz, and leave no signal at LIGO, the Einstein Telescope, the Cosmic Explorer, LISA, or pulsar -timing arrays. We focus on GWBs produced by cosmic strings and make predictions for the GW spectra scanning over high-energy scale (beyond 10 10 GeV) particle physics parameters. Signals from local string networks can easily be as large as the big bang nucleosynthesis/ cosmic microwave background bounds, with a characteristic strain as high as 10 – 26 in the 10 kHz band, offering prospects to probe grand unification physics in the 10 14 -10 17 GeV energy range. In comparison, GWB from axionic strings is suppressed (with maximal characteristic strain similar to 10 – 31 ) due to the early matter era induced by the associated heavy axions. We estimate the needed reach of hypothetical futuristic GW detectors to probe such GWB and, therefore, the corresponding high-energy physics processes. Beyond the information of the symmetry -breaking scale, the high -frequency spectrum encodes the microscopic structure of the strings through the position of the UV cutoffs associated with cusps and kinks, as well as potential information about friction forces on the string. The IR slope, on the other hand, reflects the physics responsible for the decay of the string network. We discuss possible strategies for reconstructing the scalar potential, particularly the scalar self -coupling, from the measurement of the UV cutoff of the GW spectrum.
Address [Servant, Geraldine] Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: peera.simakachorn@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001238459100006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6150
Permanent link to this record
 

 
Author Caputo, A.; Liu, H.W.; Mishra-Sharma, S.; Ruderman, J.T.
Title Modeling dark photon oscillations in our inhomogeneous Universe Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 10 Pages (down) 103533 - 26pp
Keywords
Abstract A dark photon may kinetically mix with the Standard Model photon, leading to observable cosmological signatures. The mixing is resonantly enhanced when the dark photon mass matches the primordial plasma frequency, which depends sensitively on the underlying spatial distribution of electrons. Crucially, inhomogeneities in this distribution can have a significant impact on the nature of resonant conversions. We develop and describe, for the first time, a general analytic formalism to treat resonant oscillations in the presence of inhomogeneities. Our formalism follows from the theory of level crossings of random fields and only requires knowledge of the one-point probability density function (PDF) of the underlying electron number density fluctuations. We validate our formalism using simulations and illustrate the photon-to-dark photon conversion probability for several different choices of PDFs that are used to characterize the low-redshift Universe.
Address [Caputo, Andrea] Univ Valencia, Inst Fis Corpuscular, CSIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: andrea.caputo@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000591810800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4621
Permanent link to this record
 

 
Author Di Valentino, E.; Gariazzo, S.; Giare, W.; Melchiorri, A.; Mena, O.; Renzi, F.
Title Novel model-marginalized cosmological bound on the QCD axion mass Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 10 Pages (down) 103528 - 16pp
Keywords
Abstract We present model-marginalized limits on mixed hot dark matter scenarios, which consider both thermal neutrinos and thermal QCD axions. A novel aspect of our analyses is the inclusion of small-scale cosmic microwave background (CMB) observations from the Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT), together with those from the Planck satellite and baryon acoustic oscillation (BAO) data. After marginalizing over a number of well-motivated nonminimal background cosmologies, the tightest 95% Confidential Level (CL) upper bound we obtain is 0.21 eV, both for P m nu and ma, from the combination of ACT, Planck and BAO measurements. Restricting the analyses to the standard ?CDM picture, we find P m nu < 0.16 eV and ma < 0.18 eV, both at 95% CL Interestingly, the best background cosmology is never found within the minimal ?CDM plus hot relics, regardless of the datasets exploited in the analyses. The combination of Planck with either BAO, SPT or ACT prefers a universe with a nonzero value of the running in the primordial power spectrum with strong evidence. Small-scale CMB probes, both alone and combined with BAO, either prefer, with substantial evidence, nonflat universes (as in the case of SPT) or a model with a time varying dark energy component (as in the case of ACT).
Address [Di Valentino, Eleonora] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, England, Email: e.divalentino@sheffield.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000999454300009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5554
Permanent link to this record
 

 
Author Figueroa, D.G.; Hindmarsh, M.; Lizarraga, J.; Urrestilla, J.
Title Irreducible background of gravitational waves from a cosmic defect network: Update and comparison of numerical techniques Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 10 Pages (down) 103516 - 25pp
Keywords
Abstract Cosmological phase transitions in the early Universe may produce relics in the form of a network of cosmic defects. Independently of the order of a phase transition, topology of the defects, and their global or gauge nature, the defects are expected to emit gravitational waves (GWs) as the network energy-momentum tensor adapts itself to maintaining scaling. We show that the evolution of any defect network (and for that matter any scaling source) emits a GW background with spectrum Omega(GW) proportional to f(3) for f << f(0), Omega(GW) proportional to 1/f(2) for f(0) less than or similar to f less than or similar to feq, and Omega(GW) proportional to const (i.e., exactly scale invariant) for f >> f(eq), where f(0) and f(eq) denote respectively the frequencies corresponding to the present and matter-radiation equality horizons. This background represents an irreducible emission of GWs from any scaling network of cosmic defects, with its amplitude characterized only by the symmetry-breaking scale and the nature of the defects. Using classical lattice simulations we calculate the GW signal emitted by defects created after the breaking of a global symmetry O(N) -> O(N – 1). We obtain the GW spectrum for N between 2 and 20 with two different techniques: integrating over unequal-time correlators of the energy-momentum tensor, updating our previous work on smaller lattices, and for the first time, comparing the result with the real-time evolution of the tensor perturbations sourced by the same defects. Our results validate the equivalence of the two techniques. Using cosmic microwave background upper bounds on the defects' energy scale, we discuss the difficulty of detecting this GW background in the case of global defects.
Address [Figueroa, Daniel G.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46980 Valencia, Spain, Email: daniel.figueroa@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000589181600006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4618
Permanent link to this record
 

 
Author Di Valentino, E.; Gariazzo, S.; Giunti, C.; Mena, O.; Pan, S.; Yang, W.Q.
Title Minimal dark energy: Key to sterile neutrino and Hubble constant tensions? Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 10 Pages (down) 103511 - 15pp
Keywords
Abstract Minimal dark energy models, described by the same number of free parameters of the standard cosmological model with cold dark matter plus a cosmological constant to parametrize the dark energy component, constitute very appealing scenarios which may solve long-standing, pending tensions. On the one hand, they alleviate significantly the tension between cosmological observations and the presence of one sterile neutrino motivated by the short-baseline anomalies: we obtain a 95% CL cosmological bound on the mass of a fully thermalized fourth sterile neutrino (N-eff = 4) equal to m(s) < 0.65(1.3) eV within the Phenomenologically Emergent Dark Energy (PEDE) and Vacuum Metamorphosis (VM) scenarios under consideration. Interestingly, these limits are in agreement with the observations at short-baseline experiments, and the PEDE scenario is favored with respect to the Lambda CDM case when the full data combination is considered. On the other hand, the Hubble tension is satisfactorily solved in almost all the minimal dark energy schemes explored here. These phenomenological scenarios may therefore shed light on differences arising from near and far Universe probes, and also on discrepancies between cosmological and laboratory sterile neutrino searches.
Address [Di Valentino, Eleonora] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, S Yorkshire, England, Email: e.divalentino@sheffield.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000807806300013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5248
Permanent link to this record
 

 
Author Baran, J. et al; Brzezinski, K.
Title Feasibility of the J-PET to monitor the range of therapeutic proton beams Type Journal Article
Year 2024 Publication Physica Medica Abbreviated Journal Phys. Medica
Volume 118 Issue Pages (down) 103301 - 9pp
Keywords PET; Range monitoring; J-PET; Monte Carlo simulations; Proton radiotherapy
Abstract Purpose: The aim of this work is to investigate the feasibility of the Jagiellonian Positron Emission Tomography (J -PET) scanner for intra-treatment proton beam range monitoring. Methods: The Monte Carlo simulation studies with GATE and PET image reconstruction with CASToR were performed in order to compare six J -PET scanner geometries. We simulated proton irradiation of a PMMA phantom with a Single Pencil Beam (SPB) and Spread -Out Bragg Peak (SOBP) of various ranges. The sensitivity and precision of each scanner were calculated, and considering the setup's cost-effectiveness, we indicated potentially optimal geometries for the J -PET scanner prototype dedicated to the proton beam range assessment. Results: The investigations indicate that the double -layer cylindrical and triple -layer double -head configurations are the most promising for clinical application. We found that the scanner sensitivity is of the order of 10-5 coincidences per primary proton, while the precision of the range assessment for both SPB and SOBP irradiation plans was found below 1 mm. Among the scanners with the same number of detector modules, the best results are found for the triple -layer dual -head geometry. The results indicate that the double -layer cylindrical and triple -layer double -head configurations are the most promising for the clinical application, Conclusions: We performed simulation studies demonstrating that the feasibility of the J -PET detector for PET -based proton beam therapy range monitoring is possible with reasonable sensitivity and precision enabling its pre -clinical tests in the clinical proton therapy environment. Considering the sensitivity, precision and cost-effectiveness, the double -layer cylindrical and triple -layer dual -head J -PET geometry configurations seem promising for future clinical application.
Address [Baran, Jakub; Silarski, Michal; Chug, Neha; Coussat, Aurelien; Czerwinski, Eryk; Dadgar, Meysam; Dulski, Kamil; Eliyan, Kavya, V; Gajos, Aleksander; Kacprzak, Krzysztof; Kaplon, Lukasz; Korcyl, Grzegorz; Kozik, Tomasz; Kumar, Deepak; Niedzwiecki, Szymon; Panek, Dominik; Parzych, Szymon; del Rio, Elena Perez; Simbarashe, Moyo; Sharma, Sushil; Shivani; Skurzok, Magdalena; Stepien, Ewa L.; Tayefi, Keyvan; Tayefi, Faranak; Moskal, Pawel] Jagiellonian Univ, Fac Phys Astron & Appl Comp Sci, 11 Lojasiewicza St, PL-30348 Krakow, Poland, Email: jakubbaran92@gmail.com
Corporate Author Thesis
Publisher Elsevier Sci Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1120-1797 ISBN Medium
Area Expedition Conference
Notes WOS:001178648400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5990
Permanent link to this record
 

 
Author Barrientos, L.; Borja-Lloret, M.; Casaña, J.V.; Dendooven, P.; Garcia Lopez, J.G.; Hueso-Gonzalez, F.; Jiméeez-Ramos, M.C.; Perez-Curbelo, J.; Ros, A.; Roser, J.; Senra, C.; Viegas, R.; Llosa, G.
Title Gamma-ray sources imaging and test-beam results with MACACO III Compton camera Type Journal Article
Year 2024 Publication Physica Medica Abbreviated Journal Phys. Medica
Volume 117 Issue Pages (down) 103199 - 10pp
Keywords Hadron therapy; Compton camera; Scintillator crystals; Silicon photomultipliers
Abstract Hadron therapy is a radiotherapy modality which offers a precise energy deposition to the tumors and a dose reduction to healthy tissue as compared to conventional methods. However, methods for real-time monitoring are required to ensure that the radiation dose is deposited on the target. The IRIS group of IFIC-Valencia developed a Compton camera prototype for this purpose, intending to image the Prompt Gammas emitted by the tissue during irradiation. The system detectors are composed of Lanthanum (III) bromide scintillator crystals coupled to silicon photomultipliers. After an initial characterization in the laboratory, in order to assess the system capabilities for future experiments in proton therapy centers, different tests were carried out in two facilities: PARTREC (Groningen, The Netherlands) and the CNA cyclotron (Sevilla, Spain). Characterization studies performed at PARTREC indicated that the detectors linearity was improved with respect to the previous version and an energy resolution of 5.2 % FWHM at 511 keV was achieved. Moreover, the imaging capabilities of the system were evaluated with a line source of 68Ge and a point-like source of 241Am-9Be. Images at 4.439 MeV were obtained from irradiation of a graphite target with an 18 MeV proton beam at CNA, to perform a study of the system potential to detect shifts at different intensities. In this sense, the system was able to distinguish 1 mm variations in the target position at different beam current intensities for measurement times of 1800 and 600 s.
Address [Barrientos, L.; Borja-Lloret, M.; Casana, J. V.; Hueso-Gonzalez, F.; Perez-Curbelo, J.; Ros, A.; Roser, J.; Senra, C.; Viegas, R.; Llosa, G.] CSIC UV, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: Luis.Barrientos@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Sci Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1120-1797 ISBN Medium
Area Expedition Conference
Notes WOS:001145147400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5892
Permanent link to this record
 

 
Author Linowski, T.; Schlichtholz, K.; Sorelli, G.; Gessner, M.; Walschaers, M.; Treps, N.; Rudnicki, L.
Title Application range of crosstalk-affected spatial demultiplexing for resolving separations between unbalanced sources Type Journal Article
Year 2023 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 25 Issue 10 Pages (down) 103050 - 13pp
Keywords super resolution; spatial demultiplexing; crosstalk; unbalanced sources; Fisher information; measurement precision
Abstract Super resolution is one of the key issues at the crossroads of contemporary quantum optics and metrology. Recently, it was shown that for an idealized case of two balanced sources, spatial mode demultiplexing (SPADE) achieves resolution better than direct imaging even in the presence of measurement crosstalk (Gessner et al 2020 Phys. Rev. Lett. 125 100501). In this work, we consider arbitrarily unbalanced sources and provide a systematic analysis of the impact of crosstalk on the resolution obtained from SPADE. As we dissect, in this generalized scenario, SPADE's effectiveness depends non-trivially on the strength of crosstalk, relative brightness and the separation between the sources. In particular, for any source imbalance, SPADE performs worse than ideal direct imaging in the asymptotic limit of vanishing source separations. Nonetheless, for realistic values of crosstalk strength, SPADE is still the superior method for several orders of magnitude of source separations.
Address [Linowski, Tomasz; Schlichtholz, Konrad; Rudnicki, Lukasz] Univ Gdansk, Int Ctr Theory Quantum Technol, PL-80308 Gdansk, Poland, Email: t.linowski95@gmail.com;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:001119385500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5844
Permanent link to this record
 

 
Author Blas, D.; Witte, S.J.
Title Imprints of axion superradiance in the CMB Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 10 Pages (down) 103018 - 10pp
Keywords
Abstract Light axions (m(a) less than or similar to 10(-10) eV) can form dense clouds around rapidly rotating astrophysical black holes via a mechanism known as rotational superradiance. The coupling between axions and photons induces a parametric resonance, arising from the stimulated decay of the axion cloud, which can rapidly convert regions of large axion number densities into an enormous flux of low-energy photons. In this work we consider the phenomenological implications of a superradiant axion cloud undergoing resonant decay. We show that the low-energy photons produced from such events will be absorbed over cosmologically short distances, potentially inducing massive shockwaves that heat and ionize the intergalactic medium over Mpc scales. These shockwaves may leave observable imprints in the form of anisotropic spectral distortions or inhomogeneous features in the optical depth.
Address [Blas, Diego] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: diego.blas@kcl.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000589606900004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4609
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Villaescusa-Navarro, F.; Genel, S.; Angles-Alcazar, D.; Hernquist, L.; Marinacci, F.; Spergel, D.N.; Vogelsberger, M.; Narayanan, D.
Title Weighing the Milky Way and Andromeda galaxies with artificial intelligence Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 10 Pages (down) 103003 - 8pp
Keywords
Abstract We present new constraints on the masses of the halos hosting the Milky Way and Andromeda galaxies derived using graph neural networks. Our models, trained on 2,000 state-of-the-art hydrodynamic simulations of the CAMELS project, only make use of the positions, velocities and stellar masses of the galaxies belonging to the halos, and are able to perform likelihood-free inference on halo masses while accounting for both cosmological and astrophysical uncertainties. Our constraints are in agreement with estimates from other traditional methods, within our derived posterior standard deviation.
Address [Villanueva-Domingo, Pablo; Narayanan, Desika] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46980 Paterna, Spain, Email: pablo.villanueva.domingo@gmail.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000988340900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5539
Permanent link to this record