Angles-Castillo, A., Bañuls, M. C., Perez, A., & De Vega, I. (2020). Prethermalization of quantum systems interacting with non-equilibrium environments. New J. Phys., 22(8), 083067–17pp.
Abstract: The usual paradigm of open quantum systems falls short when the environment is actually coupled to additional fields or components that drive it out of equilibrium. Here we explore the simplest such scenario, by considering a two level system coupled to a first thermal reservoir that in turn couples to a second thermal bath at a different temperature. We derive a master equation description for the system and show that, in this situation, the dynamics can be especially rich. In particular, we observe prethermalization, a transitory phenomenon in which the system initially approaches thermal equilibrium with respect to the first reservoir, but after a longer time converges to the thermal state dictated by the temperature of the second environment. Using analytical arguments and numerical simulations, we analyze the occurrence of this phenomenon, and how it depends on temperatures and coupling strengths. The phenomenology gets even richer if the system is placed between two such non-equilibrium environments. In this case, the energy current through the system may exhibit transient features and even switch direction, before the system eventually reaches a non-equilibrium steady state.
|
Mehrabankar, S., Garcia-March, M. A., Almudever, C. G., & Perez, A. (2024). Reducing the number of qubits in quantum simulations of one dimensional many-body Hamiltonians. New J. Phys., 26(8), 083023–17pp.
Abstract: We investigate the Ising and Heisenberg models using the block renormalization group method (BRGM), focusing on its behavior across different system sizes. The BRGM reduces the number of spins by a factor of 1/2 (1/3) for the Ising (Heisenberg) model, effectively preserving essential physical features of the model while using only a fraction of the spins. Through a comparative analysis, we demonstrate that as the system size increases, there is an exponential convergence between results obtained from the original and renormalized Ising Hamiltonians, provided the coupling constants are redefined accordingly. Remarkably, for a spin chain with 24 spins, all physical features, including magnetization, correlation function, and entanglement entropy, exhibit an exact correspondence with the results from the original Hamiltonian. The study of the Heisenberg model also shows this tendency, although complete convergence may appear for a size much larger than 24 spins, and is therefore beyond our computational capabilities. The success of BRGM in accurately characterizing the Ising model, even with a relatively small number of spins, underscores its robustness and utility in studying complex physical systems, and facilitates its simulation on current NISQ computers, where the available number of qubits is largely constrained.
|
Barral, D., Isoard, M., Sorelli, G., Gessner, M., Treps, N., & Walschaers, M. (2024). Metrological detection of entanglement generated by non-Gaussian operations. New J. Phys., 26(8), 083012–20pp.
Abstract: Entanglement and non-Gaussianity are physical resources that are essential for a large number of quantum-optics protocols. Non-Gaussian entanglement is indispensable for quantum-computing advantage and outperforms its Gaussian counterparts in a number of quantum-information protocols. The characterization of non-Gaussian entanglement is a critical matter as it is in general highly demanding in terms of resources. We propose a simple protocol based on the Fisher information for witnessing entanglement in an important class of non-Gaussian entangled states: photon-subtracted states. We demonstrate that our protocol is relevant for the detection of non-Gaussian entanglement generated by multiple photon-subtraction and that it is experimentally feasible through homodyne detection.
|
Gisbert, H., & Pich, A. (2018). Direct CP violation in K-0 -> pi pi : Standard Model Status. Rep. Prog. Phys., 81(7), 076201–22pp.
Abstract: In 1988 the NA31 experiment presented the first evidence of direct CP violation in the K-0 -> pi pi decay amplitudes. A clear signal with a 7.2 sigma statistical significance was later established with the full data samples from the NA31, E731, NA48 and KTeV experiments, confirming that CP violation is associated with a Delta S = 1 quark transition, as predicted by the Standard Model. However, the theoretical prediction for the measured ratio epsilon'/epsilon has been a subject of strong controversy along the years. Although the underlying physics was already clarified in 2001, the recent release of improved lattice data has revived again the theoretical debate. We review the current status, discussing in detail the different ingredients that enter into the calculation of this observable and the reasons why seemingly contradictory predictions were obtained in the past by several groups. An update of the Standard Model prediction is presented and the prospects for future improvements are analysed. Taking into account all known short-distance and long-distance contributions, one obtains Re (epsilon' / epsilon) = (15 +/- 7) . 10(-4), in good agreement with the experimental measurement.
|
Alvarez-Ruso, L., Hayato, Y., & Nieves, J. (2014). Progress and open questions in the physics of neutrino cross sections at intermediate energies. New J. Phys., 16, 075015–62pp.
Abstract: New and more precise measurements of neutrino cross sections have renewed interest in a better understanding of electroweak interactions on nucleons and nuclei. This effort is crucial to achieving the precision goals of the neutrino oscillation program, making new discoveries, like the CP violation in the leptonic sector, possible. We review the recent progress in the physics of neutrino cross sections, putting emphasis on the open questions that arise in the comparison with new experimental data. Following an overview of recent neutrino experiments and future plans, we present some details about the theoretical development in the description of (anti) neutrino-induced quasielastic (QE) scattering and the role of multi-nucleon QE-like mechanisms. We cover not only pion production in nucleons and nuclei but also other inelastic channels including strangeness production and photon emission. Coherent reaction channels on nuclear targets are also discussed. Finally, we briefly describe some of the Monte Carlo event generators, which are at the core of all neutrino oscillation and cross-section measurements.
|
Aparici, A., Santamaria, A., & Wudka, J. (2010). A model for right-handed neutrino magnetic moments. J. Phys. G, 37(7), 075012–12pp.
Abstract: A simple extension of the standard model providing Majorana magnetic moments to right-handed neutrinos is presented. The model contains, in addition to the standard model particles and right-handed neutrinos, just a singly charged scalar and a vector-like charged fermion. The phenomenology of the model is analysed and its implications in cosmology, astrophysics and lepton flavour violating processes are extracted. If light enough, the charged particles responsible for the right-handed neutrino magnetic moments could copiously be produced at the Large Hadron Collider.
|
Kasprzak, J., Roser, J., Werner, J., Kohlhase, N., Bolke, A., Kaufmann, L. M., et al. (2025). Regularized origin ensemble with a beam prior for range verification in particle therapy with Compton-camera data. Phys. Med. Biol., 70(7), 075009–24pp.
Abstract: Objective. In particle therapy (PT), several methods are being investigated to help reduce range margins and identify deviations from the original treatment plan, such as prompt-gamma imaging with Compton cameras (CC). To reconstruct the images, the Origin Ensemble (OE) algorithm is commonly used. In the context of PT, artifacts and strong noise often affect CC images. To improve the ability of OE to identify range shifts, and also to enhance image quality, we propose to regularize OE using beam a-priori knowledge (beam prior). Approach. We implemented the beam prior to OE using the class of Gibbs' distribution functions. For evaluation, Monte-Carlo simulations of centered and off-center beams with therapeutic energies impinging on a PMMA target were conducted in GATE. To introduce range shifts, air layers were introduced into the target. In addition, the effect of a bone layer, closer to a realistic scenario, was investigated. OE with the beam prior (BP-OE) and conventional OE (reference) were compared using the spill-over-ratio (SOR) as well as shifts in the distal falloff in projections using cubic splines with Chebyshev nodes. Main results. BP-OE improved the shift estimates by up to 11% compared to conventional OE for centered and up to 250% with off-centered beams. BP-OE decreased the image noise level, improving the SOR significantly by up to 96%. Significance. BP-OE applied to CC data can improve shift estimations compared to conventional OE. The developed Gibbs-based regularization framework also allows further prior functions to be included into OE, for instance, smoothing or edge-preserving priors. BP-OE could be extended to PET-based range verification or multiple-beam scenarios.
|
Gonzalez, P. (2017). A quark model study of strong decays of X(3915). J. Phys. G, 44(7), 075004–13pp.
Abstract: Strong decays of X(3915) are analyzed from two quark model descriptions of X(3915), a conventional one in terms of the Cornell potential and an unconventional one from a generalized screened potential. We conclude that the experimental suppression of the OZI allowed decay X(3915) -> D (D) over bar might be explained in both cases due to the momentum dependence of the decay amplitude. However, the experimental significance of the OZI forbidden decay X(3915) -> omega J/psi could favor an unconventional description.
|
Ayala, C., Cvetic, G., & Kogerler, R. (2017). Lattice-motivated holomorphic nearly perturbative QCD. J. Phys. G, 44(7), 075001–30pp.
Abstract: Newer lattice results indicate that, in the Landau gauge at low spacelike momenta, the gluon propagator and the ghost dressing function are finite non-zero. This leads to a definition of the QCD running coupling, in a specific scheme, that goes to zero at low spacelike momenta. We construct a running coupling which fulfills these conditions, and at the same time reproduces to a high precision the perturbative behavior at high momenta. The coupling is constructed in such a way that it reflects qualitatively correctly the holomorphic (analytic) behavior of spacelike observables in the complex plane of the squared momenta, as dictated by the general principles of quantum field theories. Further, we require the coupling to reproduce correctly the nonstrange semihadronic decay rate of tau lepton which is the best measured low-momentum QCD observable with small higher-twist effects. Subsequent application of the Borel sum rules to the V + A spectral functions of tau lepton decays, as measured by OPAL Collaboration, determines the values of the gluon condensate and of the V + A six-dimensional condensate, and reproduces the data to a significantly higher precision than the usual (MS) over bar running coupling.
|
NEXT Collaboration, Carcel, S., Carrion, J. V., Felkai, R., Kekic, M., Lopez-March, N., et al. (2020). Mitigation of backgrounds from cosmogenic Xe-137 in xenon gas experiments using He-3 neutron capture. J. Phys. G, 47(7), 075001–17pp.
Abstract: Xe-136 is used as the target medium for many experiments searching for 0 nu beta beta. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector materials. A potential background that is difficult to veto using muon tagging comes in the form of Xe-137 created by the capture of neutrons on Xe-136. This isotope decays via beta decay with a half-life of 3.8 min and a Q(beta) of similar to 4.16 MeV. This work proposes and explores the concept of adding a small percentage of He-3 to xenon as a means to capture thermal neutrons and reduce the number of activations in the detector volume. When using this technique we find the contamination from Xe-137 activation can be reduced to negligible levels in tonne and multi-tonne scale high pressure gas xenon neutrinoless double beta decay experiments running at any depth in an underground laboratory.
|