|   | 
Details
   web
Records
Author ATLAS Collaboration (Aad, G. et al); Aikot, A.; Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Chitishvili, M.; Costa, M.J.; Didenko, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Lacasta, C.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Saibel, A.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valiente Moreno, E.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M.
Title Search for New Phenomena in Two-Body Invariant Mass Distributions Using Unsupervised Machine Learning for Anomaly Detection at root s=13 TeV with the ATLAS Detector Type Journal Article
Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 132 Issue 8 Pages (down) 081801 - 23pp
Keywords
Abstract Searches for new resonances are performed using an unsupervised anomaly-detection technique. Events with at least one electron or muon are selected from 140 fb-1 of pp collisions at p ffi s ffi= 13 TeV recorded by ATLAS at the Large Hadron Collider. The approach involves training an autoencoder on data, and subsequently defining anomalous regions based on the reconstruction loss of the decoder. Studies focus on nine invariant mass spectra that contain pairs of objects consisting of one light jet or b jet and either one lepton (e; mu), photon, or second light jet or b jet in the anomalous regions. No significant deviations from the background hypotheses are observed. Limits on contributions from generic Gaussian signals with various widths of the resonance mass are obtained for nine invariant masses in the anomalous regions.
Address [Filmer, E. K.; Grant, C. M.; Jackson, P.; Kong, A. X. Y.; Pandya, H. D.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:001190886300010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6045
Permanent link to this record
 

 
Author Easa, H.; Gregoire, T.; Stolarski, D.; Cosme, C.
Title Baryogenesis and dark matter in multiple hidden sectors Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 7 Pages (down) 075003 - 29pp
Keywords
Abstract We explore a mechanism for producing the baryon asymmetry and dark matter in models with multiple hidden sectors that are Standard -Model -like but with varying Higgs mass parameters. If the field responsible for reheating the Standard Model and the exotic sectors carries an asymmetry, it can be converted into a baryon asymmetry using the standard sphaleron process. A hidden sector with positive Higgs mass squared can accommodate dark matter with its baryon asymmetry, and the larger abundance of dark matter relative to baryons is due to dark sphalerons being active all the way down the hidden sector QCD scale. This scenario predicts that dark matter is clustered in large dark nuclei and gives a lower bound on the effective relativistic degrees of freedom, Delta N eff greater than or similar to 0 .05 , which may be observable in the nextgeneration cosmic microwave background experiment CMB-S4.
Address [Easa, Hassan; Gregoire, Thomas; Stolarski, Daniel; Cosme, Catarina] Carleton Univ, Ottawa Carleton Inst Phys, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada, Email: Hassaneasa@cmail.carleton.ca;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001224349300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6129
Permanent link to this record
 

 
Author Sanchis-Lozano, M.A.; Sanz, V.
Title Observable imprints of primordial gravitational waves on the temperature anisotropies of the cosmic microwave background Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 6 Pages (down) 063529 - 11pp
Keywords
Abstract We examine the contribution of tensor modes, in addition to the dominant scalar ones, on the temperature anisotropies of the cosmic microwave background (CMB). To this end, we analyze in detail the temperature two -point angular correlation function C(Theta) from the Planck 2018 dataset, focusing on large angles (Theta greater than or similar to 120 degrees) corresponding to small l multipoles. A hierarchical set of infrared cutoffs are naturally introduced to the scalar and tensor power spectra of the CMB by invoking an extra Kaluza-Klein spatial dimension compactifying at about the grand unified theory scale between the Planck epoch and the start of inflation. We associate this set of lower scalar and tensor cutoffs with the parity of the multipole expansion of the C(Theta) function. By fitting the Planck 2018 data we compute the multipole coefficients, thereby reproducing the well-known odd -parity preference in angular correlations seen by all three satellite missions: Cosmic Background Explorer, WMAP, and Planck. Our fits improve significantly once tensor modes are included in the analysis, hence providing a hint of the imprints of primordial gravitational waves on the temperature correlations observed in the CMB today. To conclude, we suggest a relationship between, on the one hand, the lack of (positive) large -angle correlations and the odd -parity dominance in the CMB and, on the other hand, the effect of primordial gravitational waves on the CMB temperature anisotropies.
Address [Sanchis-Lozano, Miguel -Angel; Sanz, Veronica] Univ Valencia, Dept Fis Teor, CSIC, Valencia 46100, Spain, Email: miguel.angel.sanchis@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001195716600006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6038
Permanent link to this record
 

 
Author De Romeri, V.; Martin Lozano, V.; Sanchez Garcia, G.
Title Neutrino window to scalar leptoquarks: From low energy to colliders Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 5 Pages (down) 055014 - 21pp
Keywords
Abstract Leptoquarks are theorized particles of either scalar or vector nature that couple simultaneously to quarks and leptons. Motivated by recent measurements of coherent elastic neutrino -nucleus scattering, we consider the impact of scalar leptoquarks coupling to neutrinos on a few complementary processes, from low energy to colliders. In particular, we set competitive constraints on the typical mass and coupling of scalar leptoquarks by analyzing recent COHERENT data. We compare these constraints with bounds from atomic parity violation experiments, deep inelastic neutrino -nucleon scattering and collider data. Our results highlight a strong complementarity between different facilities and demonstrate the power of coherent elastic neutrino -nucleus scattering experiments to probe leptoquark masses in the sub-TeV range. Finally, we also present prospects for improving current bounds with future upgrades of the COHERENT detectors and the planned European Spallation Source.
Address [De Romeri, Valentina; Lozano, Victor Martin; Garcia, G. Sanchez] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient UV C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: deromeri@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001195802100003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6039
Permanent link to this record
 

 
Author Araujo Filho, A.A.; Hassanabadi, H.; Heidari, N.; Kriz, J.; Zare, S.
Title Gravitational traces of bumblebee gravity in metric-affine formalism Type Journal Article
Year 2024 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 41 Issue 5 Pages (down) 055003 - 21pp
Keywords bumblebee gravity; metric affine formalism; shadows
Abstract This work explores various manifestations of bumblebee gravity within the metric-affine formalism. We investigate the impact of the Lorentz violation parameter, denoted as X, on the modification of the Hawking temperature. Our calculations reveal that as X increases, the values of the Hawking temperature attenuate. To examine the behavior of massless scalar perturbations, specifically the quasinormal modes, we employ the Wentzel-Kramers-Brillouin method. The transmission and reflection coefficients are determined through our calculations. The outcomes indicate that a stronger Lorentz-violating parameter results in slower damping oscillations of gravitational waves. To comprehend the influence of the quasinormal spectrum on time-dependent scattering phenomena, we present a detailed analysis of scalar perturbations in the time-domain solution. Additionally, we conduct an investigation on shadows, revealing that larger values of X correspond to larger shadow radii. Furthermore, we constrain the magnitude of the shadow radii using the EHT horizon-scale image of SgrA* . Finally, we calculate both the time delay and the deflection angle.
Address [Araujo Filho, A. A.] Univ Valencia, CSIC, Dept Fis Teor, Ctr MIxto Univ Valencia, Burjassot 46100, Valencia, Spain, Email: dilto@fisica.ufc.br
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:001152994800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5925
Permanent link to this record