|   | 
Details
   web
Records
Author Fileviez Perez, P.; Murgui, C.; Plascencia, A.D.
Title Axion dark matter, proton decay and unification Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages (down) 091 - 18pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; GUT
Abstract We discuss the possibility to predict the QCD axion mass in the context of grand unified theories. We investigate the implementation of the DFSZ mechanism in the context of renormalizable SU(5) theories. In the simplest theory, the axion mass can be predicted with good precision in the range m(a) = (2-16) neV, and there is a strong correlation between the predictions for the axion mass and proton decay rates. In this context, we predict an upper bound for the proton decay channels with antineutrinos, tau(p -> K+(nu) over bar) less than or similar to 4 x 10(37) yr and tau(p -> pi(+)(nu) over bar) less than or similar to 2 x 10(36) yr. This theory can be considered as the minimal realistic grand unified theory with the DFSZ mechanism and it can be fully tested by proton decay and axion experiments.
Address [Fileviez Perez, Pavel; Plascencia, Alexis D.] Case Western Reserve Univ, Phys Dept, Cleveland, OH 44106 USA, Email: pxf112@case.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000588065200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4605
Permanent link to this record
 

 
Author Hellmann, C.; Ruiz-Femenia, P.
Title Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos II. P-wave and next-to-next-to-leading order S-wave coefficients Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages (down) 084 - 49pp
Keywords Cosmology of Theories beyond the SM; Supersymmetric Standard Model; Nonperturbative Effects
Abstract This paper is a continuation of an earlier work (arXiv:1210.7928) which computed analytically the tree-level annihilation rates of a collection of non-relativistic neutralino and chargino two-particle states in the general MSSM. Here we extend the results by providing the next-to-next-to-leading order corrections to the rates in the non-relativistic expansion in momenta and mass differences, which include leading P-wave effects, in analytic form. The results are a necessary input for the calculation of the Sommerfeld-enhanced dark matter annihilation rates including short-distance corrections at next-to-next-to-leading order in the non-relativistic expansion in the general MSSM with neutralino LSP.
Address [Hellmann, C.] Tech Univ Munich, Phys Dept T31, D-85748 Garching, Germany, Email: charlotte.hellmann@tum.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000324113700084 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1594
Permanent link to this record
 

 
Author Anderson, L. et al; Mena, O.
Title The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring D-A and H at z=0.57 from the baryon acoustic peak in the Data Release 9 spectroscopic Galaxy sample Type Journal Article
Year 2014 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 439 Issue 1 Pages (down) 83-101
Keywords cosmological parameters; cosmology: observations; dark energy; distance scale; large scale structure of Universe
Abstract We present measurements of the angular diameter distance to and Hubble parameter at z = 0.57 from the measurement of the baryon acoustic peak in the correlation of galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. Our analysis is based on a sample from Data Release 9 of 264 283 galaxies over 3275 square degrees in the redshift range 0.43 < z < 0.70. We use two different methods to provide robust measurement of the acoustic peak position across and along the line of sight in order to measure the cosmological distance scale. We find D-A(0.57) = 1408 +/- 45 Mpc and H(0.57) = 92.9 +/- 7.8 km s(-1) Mpc(-1) for our fiducial value of the sound horizon. These results from the anisotropic fitting are fully consistent with the analysis of the spherically averaged acoustic peak position presented in Anderson et al. Our distance measurements are a close match to the predictions of the standard cosmological model featuring a cosmological constant and zero spatial curvature.
Address [Anderson, Lauren] Univ Washington, Dept Astron, Seattle, WA 98195 USA, Email: djschlegel@lbl.gov
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000333297700026 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1738
Permanent link to this record
 

 
Author Liem, S.; Bertone, G.; Calore, F.; Ruiz de Austri, R.; Tait, T.M.P.; Trotta, R.; Weniger, C.
Title Effective field theory of dark matter: a global analysis Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages (down) 077 - 22pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Effective field theories
Abstract We present global fits of an effective field theory description of real, and complex scalar dark matter candidates. We simultaneously take into account all possible dimension 6 operators consisting of dark matter bilinears and gauge invariant combinations of quark and gluon fields. We derive constraints on the free model parameters for both the real (five parameters) and complex (seven) scalar dark matter models obtained by combining Planck data on the cosmic microwave background, direct detection limits from LUX, and indirect detection limits from the Fermi Large Area Telescope. We find that for real scalars indirect dark matter searches disfavour a dark matter particle mass below 100 GeV. For the complex scalar dark matter particle current data have a limited impact due to the presence of operators that lead to p-wave annihilation, and also do not contribute to the spin-independent scattering cross-section. Although current data are not informative enough to strongly constrain the theory parameter space, we demonstrate the power of our formalism to reconstruct the theoretical parameters compatible with an actual dark matter detection, by assuming that the excess of gamma rays observed by the Fermi Large Area Telescope towards the Galactic centre is entirely due to dark matter annihilations. Please note that the excess can very well be due to astrophysical sources such as millisecond pulsars. We find that scalar dark matter interacting via effective field theory operators can in principle explain the Galactic centre excess, but that such interpretation is in strong tension with the non-detection of gamma rays from dwarf galaxies in the real scalar case. In the complex scalar case there is enough freedom to relieve the tension.
Address [Liem, Sebastian; Bertone, Gianfranco; Calore, Francesca; Weniger, Christoph] Univ Amsterdam, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands, Email: sebastian.liem@uva.nl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000383545500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2864
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.
Title Brane-world and loop cosmology from a gravity-matter coupling perspective Type Journal Article
Year 2015 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 740 Issue Pages (down) 73-79
Keywords Modified gravity; Palatini formalism; f(R) theories; Gravity-matter coupling; Quadratic cosmology
Abstract We show that the effective brane-world and the loop quantum cosmology background expansion histories can be reproduced from a modified gravity perspective in terms of an f (R) gravity action plus a g(R) term non-minimally coupled with the matter Lagrangian. The reconstruction algorithm that we provide depends on a free function of the matter density that must be specified in each case and allows to obtain analytical solutions always. In the simplest cases, the function f (R) is quadratic in the Ricci scalar, R, whereas g(R) is linear. Our approach is compared with recent results in the literature. We show that working in the Palatini formalism there is no need to impose any constraint that keeps the equations second order, which is a key requirement for the successful implementation of the reconstruction algorithm.
Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000347046200013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2099
Permanent link to this record