|   | 
Details
   web
Records
Author Hooper, D.; Leane, R.K.; Tsai, Y.D.; Wegsman, S.; Witte, S.J.
Title A systematic study of hidden sector dark matter: application to the gamma-ray and antiproton excesses Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages (down) 163 - 38pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM
Abstract In hidden sector models, dark matter does not directly couple to the particle content of the Standard Model, strongly suppressing rates at direct detection experiments, while still allowing for large signals from annihilation. In this paper, we conduct an extensive study of hidden sector dark matter, covering a wide range of dark matter spins, mediator spins, interaction diagrams, and annihilation final states, in each case determining whether the annihilations are s-wave (thus enabling efficient annihilation in the universe today). We then go on to consider a variety of portal interactions that allow the hidden sector annihilation products to decay into the Standard Model. We broadly classify constraints from relic density requirements and dwarf spheroidal galaxy observations. In the scenario that the hidden sector was in equilibrium with the Standard Model in the early universe, we place a lower bound on the portal coupling, as well as on the dark matter's elastic scattering cross section with nuclei. We apply our hidden sector results to the observed Galactic Center gamma-ray excess and the cosmic-ray antiproton excess. We find that both of these excesses can be simultaneously explained by a variety of hidden sector models, without any tension with constraints from observations of dwarf spheroidal galaxies.
Address [Hooper, Dan; Tsai, Yu-Dai] Fermilab Natl Accelerator Lab, Fermilab, Batavia, IL 60510 USA, Email: dhooper@fnal.gov;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000555828300002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4491
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Mitsou, V.A.; Moreno Llacer, M.; Poveda, J.; Rodriguez Bosca, S.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title Reconstruction and identification of boosted di-tau systems in a search for Higgs boson pairs using 13 TeV proton-proton collision data in ATLAS Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages (down) 163 - 47pp
Keywords Beyond Standard Model; Hadron-Hadron scattering (experiments); Higgs physics; Tau Physics
Abstract In this paper, a new technique for reconstructing and identifying hadronically decaying tau (+)tau (-) pairs with a large Lorentz boost, referred to as the di-tau tagger, is developed and used for the first time in the ATLAS experiment at the Large Hadron Collider. A benchmark di-tau tagging selection is employed in the search for resonant Higgs boson pair production, where one Higgs boson decays into a boosted bbbar pair and the other into a boosted tau (+)tau (-) pair, with two hadronically decaying tau -leptons in the final state. Using 139 fb(-1) of proton-proton collision data recorded at a centre-of-mass energy of 13 TeV, the efficiency of the di-tau tagger is determined and the background with quark- or gluon-initiated jets misidentified as di-tau objects is estimated. The search for a heavy, narrow, scalar resonance produced via gluon-gluon fusion and decaying into two Higgs bosons is carried out in the mass range 1-3 TeV using the same dataset. No deviations from the Standard Model predictions are observed, and 95% confidence-level exclusion limits are set on this model.
Address [Banerjee, S.; Dang, N. P.; Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000600146700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4647
Permanent link to this record
 

 
Author Donini, A.; Hernandez, P.; Lopez-Pavon, J.; Maltoni, M.; Schwetz, T.
Title The minimal 3+2 neutrino model versus oscillation anomalies Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages (down) 161 - 20pp
Keywords Neutrino Physics; Beyond Standard Model
Abstract We study the constraints imposed by neutrino oscillation experiments on the minimal extension of the Standard Model that can explain neutrino masses, which requires the addition of just two singlet Weyl fermions. The most general renormalizable couplings of this model imply generically four massive neutrino mass eigenstates while one remains massless: it is therefore a minimal 3+2 model. The possibility to account for the confirmed solar, atmospheric and long-baseline oscillations, together with the LSND/MiniBooNE and reactor anomalies is addressed. We find that the minimal model can fit oscillation data including the anomalies better than the standard 3 nu model and similarly to the 3 + 2 phenomenological models, even though the number of free parameters is much smaller than in the latter. Accounting for the anomalies in the minimal model favours a normal hierarchy of the light states and requires a large reactor angle, in agreement with recent measurements. Our analysis of the model employs a new parametrization of seesaw models that extends the Casas-Ibarra one to regimes where higher order corrections in the light-heavy mixings are significant.
Address [Donini, A.; Hernandez, P.] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: andrea.donini@uam.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000307299800039 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1161
Permanent link to this record
 

 
Author Chowdhury, D.; Eberhardt, O.
Title Update of global Two-Higgs-Doublet model fits Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages (down) 161 - 42pp
Keywords Beyond Standard Model; Higgs Physics
Abstract We perform global fits of Two-Higgs-Doublet models with a softly broken Z(2) symmetry to recent results from the LHC detectors CMS and ATLAS, that is signal strengths and direct search limits obtained at root s = 8 TeV and root s = 13 TeV. We combine all available ATLAS and CMS constraints with the other relevant theoretical and experimental bounds and present the latest limits on the model parameters. We obtain that deviations from the so-called alignment limit beta-alpha = pi/2 cannot be larger than 0.03 in type I and have to be smaller than 0.02 in the remaining three types. For the latter, we also observe lower limits on the heavy Higgs masses in the global fit. The splittings between these masses cannot exceed 200 GeV in the types I and X and 130 GeV in the types II and Y. Finally, we find that the decay widths of the heavy Higgs particles cannot be larger than 7% of their masses if they are lighter than 1.5 TeV.
Address [Chowdhury, Debtosh] Ist Nazl Fis Nucl, Sez Roma, Piazzale Aldo Moro 2, I-00185 Rome, Italy, Email: Debtosh.Chowdhury@polytechnique.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000433263300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3595
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cardillo, F.; Castillo Gimenez, V.; Costa, M.J.; Didenko,, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.
Title Search for heavy, long-lived, charged particles with large ionisation energy loss in pp collisions at root s=13 TeV using the ATLAS experiment and the full Run 2 dataset Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages (down) 158 - 60pp
Keywords Beyond Standard Model; Exotics; Hadron-Hadron Scattering; Supersymmetry
Abstract This paper presents a search for hypothetical massive, charged, long-lived particles with the ATLAS detector at the LHC using an integrated luminosity of 139 fb(-1) of proton-proton collisions at root s = 13 TeV. These particles are expected to move significantly slower than the speed of light and should be identifiable by their high transverse momenta and anomalously large specific ionisation losses, dE/dx. Trajectories reconstructed solely by the inner tracking system and a dE/dx measurement in the pixel detector layers provide sensitivity to particles with lifetimes down to O(1) ns with a mass, measured using the Bethe-Bloch relation, ranging from 100 GeV to 3 TeV. Interpretations for pair-production of R-hadrons, charginos and staus in scenarios of supersymmetry compatible with these particles being long-lived are presented, with mass limits extending considerably beyond those from previous searches in broad ranges of lifetime.
Address [Jackson, P.; Kong, A. X. Y.; Potti, H.; Ruggeri, T. A.; Sharma, A. S.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001035434900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5647
Permanent link to this record