toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de Florian, D.; Sborlini, G.F.R.; Rodrigo, G. url  doi
openurl 
  Title Two-loop QED corrections to the Altarelli-Parisi splitting functions Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages (up) 056 - 16pp  
  Keywords NLO Computations; QCD Phenomenology  
  Abstract We compute the two-loop QED corrections to the Altarelli-Parisi (AP) splitting functions by using a deconstructive algorithmic Abelianization of the well-known NLO QCD corrections. We present explicit results for the full set of splitting kernels in a basis that includes the leptonic distribution functions that, starting from this order in the QED coupling, couple to the partonic densities. Finally, we perform a phenomenological analysis of the impact of these corrections in the splitting functions.  
  Address [de Florian, Daniel] UNSAM, ICAS, Campus Miguelete,25 Mayo & Francia, RA-1650 Buenos Aires, DF, Argentina, Email: deflo@unsam.edu.ar;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000386669900007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2863  
Permanent link to this record
 

 
Author Coppola, M.; Gomez Dumm, D.; Noguera, S.; Scoccola, N.N. url  doi
openurl 
  Title Magnetic field driven enhancement of the weak decay width of charged pions Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages (up) 058 - 19pp  
  Keywords QCD Phenomenology  
  Abstract We study the effect of a uniform magnetic field B on the decays pi- > l- nu_l bar, where l(-)=e(-), μ(-), carrying out a general analysis that includes four pi (-) decay constants. Taking the values of these constants from a chiral effective Nambu-Jona-Lasinio (NJL) model, it is seen that the total decay rate gets strongly increased with respect to the B = 0 case, with an enhancement factor ranging from similar to 10 for eB = 0.1 GeV2 up to similar to 10(3) for eB = 1 GeV2. The ratio between electronic and muonic decays gets also enhanced, reaching a value of about 1 : 2 for eB = 1 GeV2. In addition, we find that for large B the angular distribution of outgoing antineutrinos shows a significant suppression in the direction of the magnetic field.  
  Address [Coppola, Maximo; Scoccola, Norberto N.] Consejo Nacl Invest Cient & Tecn, Rivadavia 1917, RA-1033 Buenos Aires, DF, Argentina, Email: coppola@tandar.cnea.gov.ar;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000570908100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4534  
Permanent link to this record
 

 
Author Binosi, D.; Ibañez, D.; Papavassiliou, J. url  doi
openurl 
  Title Nonperturbative study of the four gluon vertex Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages (up) 059 - 32pp  
  Keywords Nonperturbative Effects; QCD; Confinement  
  Abstract In this paper we study the nonperturbative structure of the SU(3) four-gluon vertex in the Landau gauge, concentrating on contributions quadratic in the metric. We employ an approximation scheme where “one-loop” diagrams are computed using fully dressed gluon and ghost propagators, and tree-level vertices. When a suitable kinematical configuration depending on a single momentum scale p is chosen, only two structures emerge: the tree-level four-gluon vertex, and a tensor orthogonal to it. A detailed numerical analysis reveals that the form factor associated with this latter tensor displays a change of sign (zero-crossing) in the deep infrared, and finally diverges logarithmically. The origin of this characteristic behavior is proven to be entirely due to the masslessness of the ghost propagators forming the corresponding ghost-loop diagram, in close analogy to a similar effect established for the three-gluon vertex. However, in the case at hand, and under the approximations employed, this particular divergence does not affect the form factor proportional to the tree-level tensor, which remains finite in the entire range of momenta, and deviates moderately from its naive tree-level value. It turns out that the kinematic configuration chosen is ideal for carrying out lattice simulations, because it eliminates from the connected Green's function all one-particle reducible contributions, projecting out the genuine one-particle irreducible vertex. Motivated by this possibility, we discuss in detail how a hypothetical lattice measurement of this quantity would compare to the results presented here, and the potential interference from an additional tensorial structure, allowed by Bose symmetry, but not encountered within our scheme.  
  Address [Binosi, D.; Ibanez, D.] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Villazzano, TN, Italy, Email: binosi@ectstar.eu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000342215400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1954  
Permanent link to this record
 

 
Author Romero-Lopez, F.; Rusetsky, A.; Schlage, N.; Urbach, C. url  doi
openurl 
  Title Relativistic N-particle energy shift in finite volume Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages (up) 060 - 52pp  
  Keywords Lattice QCD; Lattice Quantum Field Theory  
  Abstract We present a general method for deriving the energy shift of an interacting system of N spinless particles in a finite volume. To this end, we use the nonrelativistic effective field theory (NREFT), and match the pertinent low-energy constants to the scattering amplitudes. Relativistic corrections are explicitly included up to a given order in the 1/L expansion. We apply this method to obtain the ground state of N particles, and the first excited state of two and three particles to order L-6 in terms of the threshold parameters of the two- and three-particle relativistic scattering amplitudes. We use these expressions to analyze the N-particle ground state energy shift in the complex phi (4) theory.  
  Address [Romero-Lopez, Fernando] Univ Valencia, CSIC, IFIC, Paterna 46980, Spain, Email: fernando.romero@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000617678000002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4711  
Permanent link to this record
 

 
Author Bordes, J.; Dominguez, C.A.; Moodley, P.; Peñarrocha, J.; Schilcher, K. url  doi
openurl 
  Title Chiral corrections to the SU(2) x SU(2) Gell-Mann-Oakes-Renner relation Type Journal Article
  Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages (up) 064 - 16pp  
  Keywords QCD Phenomenology  
  Abstract The next to leading order chiral corrections to the SU(2) x SU(2) Gell-Mann-Oakes- Renner (GMOR) relation are obtained using the pseudoscalar correlator to five-loop order in perturbative QCD, together with new finite energy sum rules (FESR) incorporating polynomial, Legendre type, integration kernels. The purpose of these kernels is to suppress hadronic contributions in the region where they are least known. This reduces considerably the systematic uncertainties arising from the lack of direct experimental information on the hadronic resonance spectral function. Three different methods are used to compute the FESR contour integral in the complex energy (squared) s-plane, i.e. Fixed Order Perturbation Theory, Contour Improved Perturbation Theory, and a fixed renormalization scale scheme. We obtain for the corrections to the GMOR relation, delta(pi), the value delta(pi) = (6.2 +/- 1.6)%. This result is substantially more accurate than previous determinations based on QCD sum rules; it is also more reliable as it is basically free of systematic uncertainties. It implies a light quark condensate < 0 vertical bar(u) over baru vertical bar 0 > similar or equal to < 0 vertical bar(d) over bard vertical bar 0 > < 0 vertical bar(q) over barq vertical bar 0 >vertical bar(2GeV) = (-267 +/- 5MeV)(3). As a byproduct, the chiral perturbation theory (unphysical) low energy constant H-2(r) is predicted to be H-2(r)(nu(X) = M-p) = -(5.1 +/- 1.8) x10(-3), or H-2(r) (nu(X) = M-eta) = -(5.7 +/- 2.0) x10(-3).  
  Address [Bordes, J.; Penarrocha, J.] Univ Valencia, Dept Fis Teor, CSICE, E-46100 Burjassot, Spain, Email: bordes@uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000278250000044 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 434  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva