toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bernal, N.; Martin-Albo, J.; Palomares-Ruiz, S. url  doi
openurl 
  Title A novel way of constraining WIMPs annihilations in the Sun: MeV neutrinos Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 08 Issue 8 Pages (up) 011 - 19pp  
  Keywords dark matter theory; neutrino detectors; neutrino experiments  
  Abstract Annihilation of dark matter particles accumulated in the Sun would produce a flux of high-energy neutrinos whose prospects of detection in neutrino telescopes and detectors have been extensively discussed in the literature. However, for annihilations into Standard Model particles, there would also be a flux of neutrinos in the MeV range from the decays at rest of muons and positively charged pions. These low-energy neutrinos have never been considered before and they open the possibility to also constrain dark matter annihilation in the Sun into e(+)e(-), mu(+)mu(-) or light quarks. Here we perform a detailed analysis using the recent Super-Kamiokande data in the few tens of MeV range to set limits on the WIMP-nucleon scattering cross section for different annihilation channels and computing the evaporation rate of WIMPs from the Sun for all values of the scattering cross section in a consistent way.  
  Address [Bernal, Nicolas] Univ Bonn, Bethe Ctr Theoret Phys, D-53115 Bonn, Germany, Email: nicolas@th.physik.uni-bonn.de;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000324032800014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1584  
Permanent link to this record
 

 
Author Gariazzo, S.; Archidiacono, M.; de Salas, P.F.; Mena, O.; Ternes, C.A.; Tortola, M. url  doi
openurl 
  Title Neutrino masses and their ordering: global data, priors and models Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages (up) 011 - 22pp  
  Keywords neutrino masses from cosmology; neutrino properties; cosmological parameters from CMBR; double beta decay  
  Abstract We present a full Bayesian analysis of the combination of current neutrino oscillation, neutrinoless double beta decay and Cosmic Microwave Background observations. Our major goal is to carefully investigate the possibility to single out one neutrino mass ordering, namely Normal Ordering or Inverted Ordering, with current data. Two possible parametrizations (three neutrino masses versus the lightest neutrino mass plus the two oscillation mass splittings) and priors (linear versus logarithmic) are exhaustively examined. We find that the preference for NO is only driven by neutrino oscillation data. Moreover, the values of the Bayes factor indicate that the evidence for NO is strong only when the scan is performed over the three neutrino masses with logarithmic priors; for every other combination of parameterization and prior, the preference for NO is only weak. As a by-product of our Bayesian analyses, we are able to (a) compare the Bayesian bounds on the neutrino mixing parameters to those obtained by means of frequentist approaches, finding a very good agreement; (b) determine that the lightest neutrino mass plus the two mass splittings parametrization, motivated by the physical observables, is strongly preferred over the three neutrino mass eigenstates scan and (c) find that logarithmic priors guarantee a weakly-to-moderately more efficient sampling of the parameter space. These results establish the optimal strategy to successfully explore the neutrino parameter space, based on the use of the oscillation mass splittings and a logarithmic prior on the lightest neutrino mass, when combining neutrino oscillation data with cosmology and neutrinoless double beta decay. We also show that the limits on the total neutrino mass Sigma m(nu) can change dramatically when moving from one prior to the other. These results have profound implications for future studies on the neutrino mass ordering, as they crucially state the need for self-consistent analyses which explore the best parametrization and priors, without combining results that involve different assumptions.  
  Address [Gariazzo, S.; de Salas, P. F.; Mena, O.; Ternes, C. A.; Tortola, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: gariazzo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000445497200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3736  
Permanent link to this record
 

 
Author Cottin, G.; Helo, J.C.; Hirsch, M.; Pena, C.; Wang, C.S.A.; Xie, S. url  doi
openurl 
  Title Long-lived heavy neutral leptons with a displaced shower signature at CMS Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages (up) 011 - 16pp  
  Keywords New Light Particles; Sterile or Heavy Neutrinos  
  Abstract We study the LHC discovery potential in the search for heavy neutral leptons (HNL) with a new signature: a displaced shower in the CMS muon detector, giving rise to a large cluster of hits forming a displaced shower. A new Delphes module is used to model the CMS detector response for such displaced decays. We reinterpret a dedicated CMS search for neutral long-lived particles decaying in the CMS muon endcap detectors for the minimal HNL scenario. We demonstrate that this new strategy is particularly sensitive to active-sterile mixings with tau leptons, due to hadronic tau decays. HNL masses between similar to 1-6 GeV can be accessed for mixings as low as vertical bar V-tau N vertical bar(2) similar to 10(-7), probing unique regions of parameter space in the tau sector.  
  Address [Cottin, Giovanna] Univ Adolfo Ibanez, Fac Artes Liberales, Dept Ciencias, Diagonal Torres, 2640, Santiago, Chile, Email: giovanna.cottin@uai.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000924750700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5474  
Permanent link to this record
 

 
Author Hernandez, P.; Lopez-Pavon, J.; Rius, N.; Sandner, S. url  doi
openurl 
  Title Bounds on right-handed neutrino parameters from observable leptogenesis Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages (up) 012 - 58pp  
  Keywords Baryo-and Leptogenesis; Early Universe Particle Physics; Sterile or Heavy Neutrinos  
  Abstract We revisit the generation of a matter-antimatter asymmetry in the minimal extension of the Standard Model with two singlet heavy neutral leptons (HNL) that can explain neutrino masses. We derive an accurate analytical approximation to the solution of the complete linearized set of kinetic equations, which exposes the non-trivial parameter dependencies in the form of parameterization-independent CP invariants. The identification of various washout regimes relevant in different regions of parameter space sheds light on the relevance of the mass corrections in the interaction rates and clarifies the correlations of baryogenesis with other observables. In particular, by requiring that the measured baryon asymmetry is reproduced, we derive robust upper or lower bounds on the HNL mixings depending on their masses, and constraints on their flavour structure, as well as on the CP-violating phases of the PMNS mixing matrix, and the amplitude of neutrinoless double-beta decay. We also find certain correlations between low and high scale CP phases. Especially emphasizing the testable part of the parameter space we demonstrate that our findings are in very good agreement with numerical results. The methods developed in this work can help in exploring more complex scenarios.  
  Address [Hernandez, P.] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: m.pilar.hernandez@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000914640400003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5467  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Manczak, J.; Pieterse, C.; Real, D.; Sanchez-Losa, A.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Limits on the nuclearite flux using the ANTARES neutrino telescope Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages (up) 012 - 19pp  
  Keywords dark matter detectors; neutrino detectors  
  Abstract In this work, a search for nuclearites of strange quark matter by using nine years of ANTARES data taken in the period 2009-2017 is presented. The passage through matter of these particles is simulated taking into account a detailed description of the detector response to nuclearites and of the data acquisition conditions. A down-going flux of cosmic nuclearites with Galactic velocities (beta = 10(-3)) was considered for this study. The mass threshold for detecting these particles at the detector level is 4 x 10(13) GeV/c(2). Upper limits on the nuclearite flux for masses up to 10(17) GeV/c(2) at the level of similar to 5 x 10(-17) cm(-2) s(-1) sr(-1) are obtained. These are the first upper limits on nuclearites established with a neutrino telescope and the most stringent ever set for Galactic velocities.  
  Address [Drouhin, D.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001090397800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5790  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva