toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Carcamo Hernandez, A.E.; Vishnudath, K.N.; Valle, J.W.F. url  doi
openurl 
  Title Linear seesaw mechanism from dark sector Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages (up) 046 - 18pp  
  Keywords Lepton Flavour Violation (charged); Multi-Higgs Models; Neutrino Mixing; Sterile or Heavy Neutrinos  
  Abstract We propose a minimal model where a dark sector seeds neutrino mass generation radiatively within the linear seesaw mechanism. Neutrino masses are calculable, since treelevel contributions are forbidden by symmetry. They arise from spontaneous lepton number violation by a small Higgs triplet vacuum expectation value. Lepton flavour violating processes e.g. μ-> e gamma can be sizeable, despite the tiny neutrino masses. We comment also on dark-matter and collider implications.  
  Address [Hernandez, A. E. Carcamo; Vishnudath, K. N.] Univ Tecn Federico Santa Maria, Casilla 110-V, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001184730300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5982  
Permanent link to this record
 

 
Author Gomez-Vargas, G.A.; Lopez-Fogliani, D.E.; Muñoz, C.; Perez, A.D.; Ruiz de Austri, R. url  doi
openurl 
  Title Search for sharp and smooth spectral signatures of μnu SSM gravitino dark matter with Fermi- LAT Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages (up) 047 - 23pp  
  Keywords dark matter experiments; dark matter theory; gamma ray experiments  
  Abstract The μnu SSM solves the μproblem of supersymmetric models and reproduces neutrino data, simply using couplings with right-handed neutrinos nu's. Given that these couplings break explicitly R parity, the gravitino is a natural candidate for decaying dark matter in the μnu SSM. In this work we carry out a complete analysis of the detection of μnu SSM gravitino dark matter through gamma-ray observations. In addition to the two-body decay producing a sharp line, we include in the analysis the three-body decays producing a smooth spectral signature. We perform first a deep exploration of the low-energy parameter space of the μnu SSM taking into account that neutrino data must be reproduced. Then, we compare the gamma-ray fluxes predicted by the model with Fermi-LAT observations. In particular, with the 95% CL upper limits on the total diffuse extragalactic gamma-ray background using 50 months of data, together with the upper limits on line emission from an updated analysis using 69.9 months of data. For standard values of bino and wino masses, gravitinos with masses larger than about 4 GeV, or lifetimes smaller than about 10(28) s, produce too large fluxes and are excluded as dark matter candidates. However, when limiting scenarios with large and close values of the gaugino masses are considered, the constraints turn out to be less stringent, excluding masses larger than 17 GeV and lifetimes smaller than 4 x 10(25) s.  
  Address [Gomez-Vargas, German A.; Lopez-Fogliani, Daniel E.; Munoz, Carlos; Perez, Andres D.; Ruiz de Austri, Roberto] Pontificia Univ Catolica Chile, AInstituto Astrofis, Ave Vicu Mackenna 4860, Santiago, Chile, Email: ggomezv@uc.cl;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000405653700036 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3210  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Valls, P.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Measurement of the J/psi pair production cross-section in pp collisions at root s=13 TeV Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages (up) 047 - 38pp  
  Keywords Hadron-Hadron scattering (experiments); Particle and resonance production; proton-proton scattering; QCD; Quarkonium  
  Abstract The production cross-section of J/psi pairs is measured using a data sample of pp collisions collected by the LHCb experiment at a centre-of-mass energy of root s = 13TeV, corresponding to an integrated luminosity of 279 +/- 11 pb(-1). The measurement is performed for J/psi mesons with a transverse momentum of less than 10 GeV/c in the rapidity range 2.0 < y < 4.5. The production cross-section is measured to be 15.2 +/- 1.0 +/- 0.9 nb. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the J/psi pair are measured and compared to theoretical predictions.  
  Address [Bediaga, I.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; Molina Rodriguez, J.; dos Reis, A. C.; Rodrigues, A. B.; Salustino Guimaraes, V.; Soares Lavra, I.] CBPF, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000402990000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3367  
Permanent link to this record
 

 
Author Helo, J.C.; Hirsch, M.; Ota, T. url  doi
openurl 
  Title Proton decay and light sterile neutrinos Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages (up) 047 - 15pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract Within the standard model, non-renormalizable operators at dimension six (d = 6) violate baryon and lepton number by one unit and thus lead to proton decay. Here, we point out that the proton decay mode with a charged pion and missing energy can be a characteristic signature of d = 6 operators containing a light sterile neutrino, if it is not accompanied by the standard pi(0)e(+) final state. We discuss this effect first at the level of effective operators and then provide a concrete model with new physics at the TeV scale, in which the lightness of the active neutrinos and the stability of the proton are related.  
  Address [Helo, Juan C.] Univ La Serena, Fac Ciencias, Dept Fis, Ave Cisternas 1200, La Serena, Chile, Email: jchelo@userena.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000435023100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3610  
Permanent link to this record
 

 
Author Arguelles, C.A.; Palomares-Ruiz, S.; Schneider, A.; Wille, L.; Yuan, T.L. url  doi
openurl 
  Title Unified atmospheric neutrino passing fractions for large-scale neutrino telescopes Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages (up) 047 - 41pp  
  Keywords neutrino detectors; neutrino experiments; ultra high energy photons and neutrinos  
  Abstract The atmospheric neutrino passing fraction, or self-veto, is defined as the probability for an atmospheric neutrino not to be accompanied by a detectable muon from the same cosmic-ray air shower. Building upon previous work, we propose a redefinition of the passing fractions by unifying the treatment for muon and electron neutrinos. Several approximations have also been removed. This enables performing detailed estimations of the uncertainties in the passing fractions from several inputs: muon losses, cosmic-ray spectrum, hadronic-interaction models and atmosphere-density profiles. We also study the passing fractions under variations of the detector configuration: depth, surrounding medium and muon veto trigger probability. The calculation exhibits excellent agreement with passing fractions obtained from Monte Carlo simulations. Finally, we provide a general software framework to implement this veto technique for all large-scale neutrino observatories.  
  Address [Arguelle, Carlos A.] MIT, Dept Phys, Cambridge, MA 02139 USA, Email: caad@mit.edu;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000439590200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3677  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva