|   | 
Details
   web
Records
Author Real, D.; Calvo, D.; Diaz, A.; Salesa Greus, F.; Sanchez Losa, A.
Title A Narrow Optical Pulse Emitter Based on LED: NOPELED Type Journal Article
Year 2022 Publication Sensors Abbreviated Journal Sensors
Volume 22 Issue 19 Pages (down) 7683 - 15pp
Keywords short optical pulse; optical instrumentation
Abstract Light sources emitting short pulses are needed in many particle physics experiments using optical sensors as they can replicate the light produced by the particles being detected and are also an important calibration and test element. This work presents NOPELED, a light source based on LEDs emitting short optical pulses with typical rise times of less than 3 ns and Full Width at Half Maximum lower than 7 ns. The emission wavelength depends on the model of LED used. Several LED models have been characterized in the range from 405 to 532 nm, although NOPELED can work with LED emitting wavelengths outside of that region. While the wavelength is fixed for a given LED model, the intensity and the frequency of the optical pulse can be controlled. NOPELED, which also has low cost and simple operation, can be operated remotely, making it appropriate for either different physics experiments needing in-place light sources such as astrophysical neutrino detectors using photo-multipliers or positron emission tomography devices using scintillation counters, or, beyond physics, applications needing short pulses of light such as protein fluorescence or chemodetection of heavy metals.
Address [Real, Diego; Calvo, David; Salesa Greus, Francisco; Sanchez Losa, Agustin] Univ Valencia, IFIC Inst Fis Corpuscular, CSIC, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: real@ific.uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000867935300001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5381
Permanent link to this record
 

 
Author Muñoz, E.; Barrio, J.; Etxebeste, A.; Ortega, P.G.; Lacasta, C.; Oliver, J.F.; Solaz, C.; Llosa, G.
Title Performance evaluation of MACACO: a multilayer Compton camera Type Journal Article
Year 2017 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 62 Issue 18 Pages (down) 7321-7341
Keywords Compton imaging; Compton camera; continuous LaBr3 crystal; silicon photomultiplier; hadron therapy
Abstract Compton imaging devices have been proposed and studied for a wide range of applications. We have developed a Compton camera prototype which can be operated with two or three detector layers based on monolithic lanthanum bromide (LaBr3) crystals coupled to silicon photomultipliers (SiPMs), to be used for proton range verification in hadron therapy. In this work, we present the results obtained with our prototype in laboratory tests with radioactive sources and in simulation studies. Images of a Na-22 and an Y-88 radioactive sources have been successfully reconstructed. The full width half maximum of the reconstructed images is below 4 mm for a Na-22 source at a distance of 5 cm.
Address [Munoz, Enrique; Barrio, John; Etxebeste, Ane; Ortega, Pablo G.; Lacasta, Carlos; Oliver, Josep F.; Solaz, Carles; Llosa, Gabriela] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: Enrique.Munoz@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000408229900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3253
Permanent link to this record
 

 
Author NEXT Collaboration (Navarro, K.E. et al); Carcel, S.; Carrion, J.V.; Lopez, F.; Lopez-March, N.; Martin-Albo, J.; Muñoz Vidal, J.; Novella, P.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.
Title A compact dication source for Ba2+ tagging and heavy metal ion sensor development Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 7 Pages (down) P07044 - 19pp
Keywords Beam Optics; Heavy-ion detectors; Ion identification systems; Ion sources (positive ions; negative ions; electron cyclotron resonance (ECR); electron beam (EBIS))
Abstract We present a tunable metal ion beam that delivers controllable ion currents in the picoamp range for testing of dry-phase ion sensors. Ion beams are formed by sequential atomic evaporation and single or multiple electron impact ionization, followed by acceleration into a sensing region. Controllability of the ionic charge state is achieved through tuning of electrode potentials that influence the retention time in the ionization region. Barium, lead, and cadmium samples have been used to test the system, with ion currents identified and quantified using a quadrupole mass analyzer. Realization of a clean Ba2+ ion beam within a bench-top system represents an important technical advance toward the development and characterization of barium tagging systems for neutrinoless double beta decay searches in xenon gas. This system also provides a testbed for investigation of novel ion sensing methodologies for environmental assay applications, with dication beams of Pb2+ and Cd2+ also demonstrated for this purpose.
Address [Navarro, K. E.; Baeza-Rubio, J.; Giri, S.; Jones, B. J. P.; Nygren, D. R.; Samaniego, F. J.; Stogsdill, K.; Tiscareno, M. R.; Byrnes, N.; Dey, E.; Mistry, K.; Parmaksiz, I.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA, Email: karen.navarro@uta.edu
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001106703500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5860
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Manczak, J.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J.
Title The KM3NeT multi-PMT optical module Type Journal Article
Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 17 Issue 7 Pages (down) P07038 - 28pp
Keywords Cherenkov detectors; Large detector systems for particle and astroparticle physics; Neutrino detectors
Abstract The optical module of the KM3NeT neutrino telescope is an innovative multi-faceted large area photodetection module. It contains 31 three-inch photomultiplier tubes in a single 0.44 m diameter pressure-resistant glass sphere. The module is a sensory device also comprising calibration instruments and electronics for power, readout and data acquisition. It is capped with a breakout-box with electronics for connection to an electro-optical cable for power and long-distance communication to the onshore control station. The design of the module was qualified for the first time in the deep sea in 2013. Since then, the technology has been further improved to meet requirements of scalability, cost-effectiveness and high reliability. The module features a sub-nanosecond timing accuracy and a dynamic range allowing the measurement of a single photon up to a cascade of thousands of photons, suited for the measurement of the Cherenkov radiation induced in water by secondary particles from interactions of neutrinos with energies in the range of GeV to PeV. A distributed production model has been implemented for the delivery of more than 6000 modules in the coming few years with an average production rate of more than 100 modules per month. In this paper a review is presented of the design of the multi-PMT KM3NeT optical module with a proven effective background suppression and signal recognition and sensitivity to the incoming direction of photons.
Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Italy, Italy, Email: km3net-pc@km3net.de
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000898568200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5449
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cardillo, F.; Castillo, F.L.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Mitsou, V.A.; Moreno Llacer, M.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rodriguez Bosca, S.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.
Title Performance of the ATLAS RPC detector and Level-1 muon barrel trigger at root s=13 TeV Type Journal Article
Year 2021 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 16 Issue 7 Pages (down) P07029 - 64pp
Keywords Gaseous detectors; Muon spectrometers; Resistive-plate chambers; Trigger detectors
Abstract The ATLAS experiment at the Large Hadron Collider (LHC) employs a trigger system consisting of a first-level hardware trigger (L1) and a software-based high-level trigger. The L1 muon trigger system selects muon candidates, assigns them to the correct LHC bunch crossing and classifies them into one of six transverse-momentum threshold classes. The L1 muon trigger system uses resistive-plate chambers (RPCs) to generate the muon-induced trigger signals in the central (barrel) region of the ATLAS detector. The ATLAS RPCs are arranged in six concentric layers and operate in a toroidal magnetic field with a bending power of 1.5 to 5.5 Tm. The RPC detector consists of about 3700 gas volumes with a total surface area of more than 4000 m(2). This paper reports on the performance of the RPC detector and L1 muon barrel trigger using 60.8 fb(-1) of proton-proton collision data recorded by the ATLAS experiment in 2018 at a centre-of-mass energy of 13 TeV. Detector and trigger performance are studied using Z boson decays into a muon pair. Measurements of the RPC detector response, efficiency, and time resolution are reported. Measurements of the L1 muon barrel trigger efficiencies and rates are presented, along with measurements of the properties of the selected sample of muon candidates. Measurements of the RPC currents, counting rates and mean avalanche charge are performed using zero-bias collisions. Finally, RPC detector response and efficiency are studied at different high voltage and front-end discriminator threshold settings in order to extrapolate detector response to the higher luminosity expected for the High Luminosity LHC.
Address [Duvnjak, D.; Jackson, P.; Kong, X. Y.; Oliver, J. L.; Ruggeri, T. A.; Sharma, A. S.; White, J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000694909000009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4966
Permanent link to this record
 

 
Author Marco-Hernandez, R.; Alves, D.; Angoletta, M.E.; Marqversen, O.; Molendijk, J.; Oponowicz, E.; Ruffieux, R.; Sanchez-Quesada, J.; Soby, L.
Title The AD and ELENA orbit, trajectory and intensity measurement systems Type Journal Article
Year 2017 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 12 Issue Pages (down) P07024 - 24pp
Keywords Beam-line instrumentation (beam position and profile monitors; beam-intensity monitors; bunch length monitors); Data acquisition concepts; Digital electronic circuits; Digital signal processing (DSP)
Abstract This paper describes the new Antiproton Decelerator (AD) orbit measurement system and the Extra Low ENergy Antiproton ring (ELENA) orbit, trajectory and intensity measurement system. The AD machine at European Organization for Nuclear Research (CERN) is presently being used to decelerate antiprotons from 3.57 GeV/c to 100 MeV/c for matter vs anti-matter comparative studies. The ELENA machine, presently under commissioning, has been designed to provide an extra deceleration stage down to 13.7 MeV/c. The AD orbit system is based on 32 horizontal and 27 vertical electrostatic Beam Position Monitor (BPM) fitted with existing low noise front-end amplifiers while the ELENA system consists of 24 BPMs equipped with new low-noise head amplifiers. In both systems the front-end amplifiers generate a difference (delta) and a sum (sigma) signal which are sent to the digital acquisition system, placed tens of meters away from the AD or ELENA rings, where they are digitized and further processed. The beam position is calculated by dividing the difference signal by the sum signal either using directly the raw digitized data for measuring the turn-by-turn trajectory in the ELENA system or after down-mixing the signals to baseband for the orbit measurement in both machines. The digitized sigma signal will be used in the ELENA system to calculate the bunched beam intensity and the Schottky parameters with coasting beam after passing through different signal processing chain. The digital acquisition arrangement for both systems is based on the same hardware, also used in the ELENA Low Level Radio Frequency (LLRF) system, which follows the VME Switched Serial (VXS) enhancement of the Versa Module Eurocard 64x extension (VME64x) standard and includes VITA 57 standard Field Programmable Gate Array Mezzanine Card (FMC). The digital acquisition Field Programmable Gate Array (FPGA) andDigital Signal Processor (DSP) firmware sharesmany common functionalities with the LLRF system but has been tailored for this measurement application in particular. Specific control and acquisition software has been developed for these systems. Both systems are installed in AD and ELENA. The AD orbit system currently measures the orbit in AD while the ELENA system is being used in the commissioning of the ELENA ring.
Address [Marco-Hernandez, R.; Alves, D.; Angoletta, M. E.; Marqversen, O.; Molendijk, J.; Oponowicz, E.; Ruffieux, R.; Sanchez-Quesada, J.; Soby, L.] CERN, European Org Nucl Res, Beams Dept, 385 Route Meyrin, Meyrin, Switzerland, Email: Ricardo.Marco@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000406392600024 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3233
Permanent link to this record
 

 
Author Poley, L. et al; Lacasta, C.; Soldevila, U.
Title Characterisation of strip silicon detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam Type Journal Article
Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 11 Issue Pages (down) P07023 - 12pp
Keywords Inspection with x-rays; Si microstrip and pad detectors; Hybrid detectors; Instrumentation for particle accelerators and storage rings – high energy (linear accelerators, synchrotrons)
Abstract The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity up to 6.10(34) cm(-2) s(-1). A consequence of this increased luminosity is the expected radiation damage at 3000 fb(-1) after ten years of operation, requiring the tracking detectors to withstand fluences to over 1.10(16) 1 MeV n(eq)/cm(2) . In order to cope with the consequent increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 μm FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 μm thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 μm thick full size radial (end-cap) strip sensor – utilizing bi-metal readout layers – wire bonded to 250 nm CMOS binary readout chips (ABCN-25). A resolution better than the inter strip pitch of the 74.5 μm strips was achieved for both detectors. The effect of the p-stop diffusion layers between strips was investigated in detail for the wire bond pad regions. Inter strip charge collection measurements indicate that the effective width of the strip on the silicon sensors is determined by p-stop regions between the strips rather than the strip pitch.
Address [Poley, L.; Bloch, I.; Diez, S.; Gregor, I. -M.; Lohwasser, K.] DESY, Notkestr, Hamburg, Germany, Email: Anne-Luise.Poley@desy.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000387763000014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2872
Permanent link to this record
 

 
Author NEXT Collaboration (Simon, A. et al); Felkai, R.; Martinez-Lema, G.; Sorel, M.; Gomez-Cadenas, J.J.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Ferrario, P.; Kekic, M.; Laing, A.; Lopez-March, N.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Rodriguez, J.; Romo Luque, C.; Torrent, J.; Yahlali, N.
Title Electron drift properties in high pressure gaseous xenon Type Journal Article
Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 13 Issue Pages (down) P07013 - 23pp
Keywords Charge transport and multiplication in gas; Charge transport, multiplication and electroluminescence in rare gases and liquids; Double-beta decay detectors; Gaseous imaging and tracking detectors
Abstract Gaseous time projection chambers (TPC) are a very attractive detector technology for particle tracking. Characterization of both drift velocity and diffusion is of great importance to correctly assess their tracking capabilities. NEXT-White is a High Pressure Xenon gas TPC with electroluminescent amplification, a 1:2 scale model of the future NEXT-100 detector, which will be dedicated to neutrinoless double beta decay searches. NEXT-White has been operating at Canfranc Underground Laboratory (LSC) since December 2016. The drift parameters have been measured using Kr-83(m) for a range of reduced drift fields at two different pressure regimes, namely 7.2 bar and 9.1 bar. The results have been compared with Magboltz simulations. Agreement at the 5% level or better has been found for drift velocity, longitudinal diffusion and transverse diffusion.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: ander@post.bgu.ac.il
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000439125700006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3671
Permanent link to this record
 

 
Author Poley, L. et al; Lacasta, C.
Title Investigations into the impact of locally modified sensor architectures on the detection efficiency of silicon micro-strip sensors Type Journal Article
Year 2017 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 12 Issue Pages (down) P07006 - 17pp
Keywords Si microstrip and pad detectors; Inspection with x-rays; Hybrid detectors; Instrumentation for particle accelerators and storage rings – high energy (linear accelerators, synchrotrons)
Abstract The High Luminosity Upgrade of the LHC will require the replacement of the Inner Detector of ATLAS with the Inner Tracker (ITk) in order to cope with higher radiation levels and higher track densities. Prototype silicon strip detector modules are currently developed and their performance is studied in both particle test beams and X-ray beams. In previous test beam measurements of prototype modules, the response of silicon sensors has been studied in detailed scans across individual sensor strips. These scans found instances of sensor strips collecting charge across areas on the sensor deviating from the geometrical width of a sensor strip. The variations have been linked to local features of the sensor architecture. This paper presents results of detailed sensor measurements in both X-ray and particle beams investigating the impact of sensor features (metal pads and p-stops) on the sensor strip response.
Address [Poley, L.] DESY, Notkestr, Hamburg, Germany, Email: Anne-Luise.Poley@desy.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000406392600006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3234
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cardillo, F.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Mitsou, V.A.; Moreno Llacer, M.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.
Title The ATLAS Fast TracKer system Type Journal Article
Year 2021 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 16 Issue 7 Pages (down) P07006 - 61pp
Keywords Modular electronics; Online farms and online filtering; Pattern recognition, cluster finding, calibration and fitting methods; Trigger concepts and systems (hardware and software)
Abstract The ATLAS Fast TracKer (FTK) was designed to provide full tracking for the ATLAS high-level trigger by using pattern recognition based on Associative Memory (AM) chips and fitting in high-speed field programmable gate arrays. The tracks found by the FTK are based on inputs from all modules of the pixel and silicon microstrip trackers. The as-built FTK system and components are described, as is the online software used to control them while running in the ATLAS data acquisition system. Also described is the simulation of the FTK hardware and the optimization of the AM pattern banks. An optimization for long-lived particles with large impact parameter values is included. A test of the FTK system with the data playback facility that allowed the FTK to be commissioned during the shutdown between Run 2 and Run 3 of the LHC is reported. The resulting tracks from part of the FTK system covering a limited eta-phi region of the detector are compared with the output from the FTK simulation. It is shown that FTK performance is in good agreement with the simulation.
Address [Duvnjak, D.; Jackson, P.; Kong, A. X. Y.; Oliver, J. L.; Ruggeri, T. A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000791152800006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5225
Permanent link to this record