toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author De Romeri, V.; Hirsch, M. url  doi
openurl 
  Title Sneutrino dark matter in low-scale seesaw scenarios Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages (up) 106 - 28pp  
  Keywords Supersymmetry Phenomenology  
  Abstract We consider supersymmetric models in which sneutrinos are viable dark matter candidates. These are either simple extensions of the Minimal Supersymmetric Standard Model with additional singlet superfields, such as the inverse or linear seesaw, or a model with an additional U(1) group. All of these models can accomodate the observed small neutrino masses and large mixings. We investigate the properties of sneutrinos as dark matter candidates in these scenarios. We check for phenomenological bounds, such as correct relic abundance, consistency with direct detection cross section limits and laboratory constraints, among others lepton flavour violating (LFV) charged lepton decays. While inverse and linear seesaw lead to different results for LFV, both models have very similar dark matter phenomenology, consistent with all experimental bounds. The extended gauge model shows some additional and peculiar features due to the presence of an extra gauge boson Z' and an additional light Higgs. Specifically, we point out that for sneutrino LSPs there is a strong constraint on the mass of the Z' due to the experimental bounds on the direct detection scattering cross section.  
  Address [De Romeri, Valentina; Hirsch, Martin] Univ Valencia, Inst Fis Corpuscular, CSIC, AHEP Grp, E-46071 Valencia, Spain, Email: deromeri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000313124000041 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1318  
Permanent link to this record
 

 
Author Arbelaez, C.; Hirsch, M.; Reichert, L. url  doi
openurl 
  Title Supersymmetric mass spectra and the seesaw type-I scale Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages (up) 112  
  Keywords  
  Abstract We calculate supersymmetric mass spectra with cMSSM boundary conditions and a type-I seesaw mechanism added to explain current neutrino data. Using published, estimated errors on SUSY mass observables for a combined LHC+ILC analysis, we perform a theoretical chi(2) analysis to identify parameter regions where pure cMSSM and cMSSM plus seesaw type-I might be distinguishable with LHC+ILC data. The most important observables are determined to be the (left) smuon and selectron masses and the splitting between them, respectively. Splitting in the (left) smuon and selectrons is tiny in most of cMSSM parameter space, but can be quite sizeable for large values of the seesaw scale, m S S. Thus, for very roughly m(SS) >= 10(14) GeV hints for type-I seesaw might appear in SUSY mass measurements. Since our numerical results depend sensitively on forecasted error bars, we discuss in some detail the accuracies, which need to be achieved, before a realistic analysis searching for signs of type-I seesaw in SUSY spectra can be carried out.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301453400032 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1026  
Permanent link to this record
 

 
Author Gonzalez, L.; Helo, J.C.; Hirsch, M.; Kovalenko, S.G. url  doi
openurl 
  Title Scalar-mediated double beta decay and LHC Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages (up) 130 - 15pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract The decay rate of neutrinoless double beta (0 nu beta beta) decay could be dominated by Lepton Number Violating (LNV) short-range diagrams involving only heavy scalar intermediate particles, known as “topology-II” diagrams. Examples are diagrams with diquarks, leptoquarks or charged scalars. Here, we compare the LNV discovery potentials of the LHC and 0 nu beta beta-decay experiments, resorting to three example models, which cover the range of the optimistic-pessimistic cases for 0 nu beta beta decay. We use the LHC constraints from dijet as well as leptoquark searches and find that already with 20/fb the LHC will test interesting parts of the parameter space of these models, not excluded by the current limits on 0 nu beta beta-decay.  
  Address [Gonzalez, L.; Helo, J. C.; Kovalenko, S. G.] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Casilla 110-5, Valparaiso, Chile, Email: lorena.gonzalez@alumnos.usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399774600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3060  
Permanent link to this record
 

 
Author Hirsch, M.; Lineros, R.A.; Morisi, S.; Palacio, J.; Rojas, N.; Valle, J.W.F. url  doi
openurl 
  Title WIMP dark matter as radiative neutrino mass messenger Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages (up) 149 - 18pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Neutrino Physics  
  Abstract The minimal seesaw extension of the Standard SU(3)(c)circle times SU(2)(L)circle times U(1)(Y) Model requires two electroweak singlet fermions in order to accommodate the neutrino oscillation parameters at tree level. Here we consider a next to minimal extension where light neutrino masses are generated radiatively by two electroweak fermions: one singlet and one triplet under SU(2)(L). These should be odd under a parity symmetry and their mixing gives rise to a stable weakly interactive massive particle (WIMP) dark matter candidate. For mass in the GeV-TeV range, it reproduces the correct relic density, and provides an observable signal in nuclear recoil direct detection experiments. The fermion triplet component of the dark matter has gauge interactions, making it also detectable at present and near future collider experiments.  
  Address [Hirsch, M.; Lineros, R. A.; Palacio, J.; Valle, J. W. F.] Univ Valencia, Edificio Inst Paterna, CSIC, Inst Fis Corpuscular,AHEP Grp, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000326047200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1623  
Permanent link to this record
 

 
Author Bonnet, F.; Hirsch, M.; Ota, T.; Winter, W. url  doi
openurl 
  Title Systematic study of the d=5 Weinberg operator at one-loop order Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages (up) 153 - 23pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We perform a systematic study of the d = 5 Weinberg operator at the one-loop level. We identify three different categories of neutrino mass generation: (1) finite irreducible diagrams; (2) finite extensions of the usual seesaw mechanisms at one-loop and (3) divergent loop realizations of the seesaws. All radiative one-loop neutrino mass models must fall in to one of these classes. Case (1) gives the leading contribution to neutrino mass naturally and a classic example of this class is the Zee model. We demonstrate that in order to prevent that a tree level contribution dominates in case (2), Majorana fermions running in the loop and an additional Z(2) symmetry are needed for a genuinely leading one-loop contribution. In the type-II loop extensions, the Yukawa coupling will be generated at one loop, whereas the type-I/III extensions can be interpreted as loop-induced inverse or linear seesaw mechanisms. For the divergent diagrams in category (3), the tree level contribution cannot be avoided and is in fact needed as counter term to absorb the divergence.  
  Address [Bonnet, Florian; Winter, Walter] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: florian.bonnet@physik.uni-wuerzburg.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000307299800031 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1159  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva