Xiao, C. W., Bayar, M., & Oset, E. (2012). Prediction of D*-multi-rho states. Phys. Rev. D, 86(9), 094019–10pp.
Abstract: We present a study of the many-body interaction between a D* and multi-rho. We use an extrapolation to SU(4) of the hidden gauge formalism, which produced dynamically the resonances f(2)(1270) in the rho rho interaction and D-2* (2460) in the rho D* interaction. We then let a third particle, rho, D*, or a resonance, collide with them, evaluating the scattering amplitudes in terms of the fixed center approximation of the Faddeev equations. We find several clear resonant structures above 2800 MeV in the multibody scattering amplitudes. They would correspond to new charmed resonances, D-3*, D-4*, D-5*, and D-6*, which are not yet listed in the Particle Data Group, which would be analogous to the rho(3)(1690), f(4)(2050), rho(5)(2350), f(6)(2510) and K-3*(1780), K-4*(2045), K-5*(2380) described before as multi-rho and K*-multi-rho states, respectively.
|
Bayar, M., Liang, W. H., & Oset, E. (2014). B-0 and B-s(0) decays into J/psi plus a scalar or vector meson. Phys. Rev. D, 90(11), 114004–9pp.
Abstract: We extend a recent approach to describe the B-0 and B-s(0) decays into J/psi f(0)(500) and J/psi f(0)(980), relating it to the B-0 and B-s(0) decays into J/psi and a vector meson, phi, rho, K*. In addition, the B-0 and B-s(0) decays into J/psi and kappa(800) are evaluated and compared to the K* vector production. The rates obtained are in agreement with the available experiment while predictions are made for the J/psi plus kappa(800) decay.
|
Bayar, M., & Oset, E. (2022). Method to observe the J(P)=2(+) partner of the X-0(2866) in the B+ -> D+ D- K+ reaction. Phys. Lett. B, 833, 137364–6pp.
Abstract: We propose a method based on the moments of the D- K+ mass distribution in the B+ -> D+ D- K+ decay to disentangle the contribution of the 2(+) state, partner of X-0(2900) in the (D) over bar *K* picture for this resonance. Some of these moments show the interference patterns of the X-1(2900) and X-0(2900) with the 2(+) state, which provide a clearer signal of the 2(+) resonance than the 2(+) signal alone. The construction of these magnitudes from present data is easy to implement, and based on these data we show that clear signals for that resonance should be seen even with the present statistics.
|
Duan, M. Y., Bayar, M., & Oset, E. (2024). Precise determination of the ηΛ scattering length and effective range and relationship to the Λ(1670) resonance. Phys. Lett. B, 857, 139003–5pp.
Abstract: We use the Belle data on the K(-)p mass distribution of the Lambda(+)(c)-> pK(-)pi(+) reaction near the eta Lambda threshold to determine the eta Lambda scattering length and effective range. We show that from these data alone we can determine the value of a with better precision than so far determined, and the value of r(0) for the first time. The addition of the K(-)p ->eta Lambda data allows us to improve the precision of these magnitudes, with errors smaller than 15%. We also determine with high precision the pole position of the Lambda(1670).
|