|   | 
Details
   web
Records
Author Barenboim, G.; Rasero, J.
Title Baryogenesis from a right-handed neutrino condensate Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages (up) 097 - 15pp
Keywords Cosmology of Theories beyond the SM; Neutrino Physics
Abstract We show that the baryon asymmetry of the Universe can be generated by a strongly coupled right handed neutrino condensate which also drives inflation. The resulting model has only a small number of parameters, which completely determine not only the baryon asymmetry of the Universe and the mass of the right handed neutrino but also the inflationary phase. This feature allows us to make predictions that will be tested by current and planned experiments. As compared to the usual approach our dynamical framework is both economical and predictive.
Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: gabriela.barenboim@uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000289295300025 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 622
Permanent link to this record
 

 
Author Lazaries, G.; Pallis, C.
Title Shift symmetry and Higgs inflation in supergravity with observable gravitational waves Type Journal Article
Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages (up) 114 - 28pp
Keywords Cosmology of Theories beyond the SM; Supergravity Models; Supersymmetric Effective Theories
Abstract We demonstrate how to realize within supergravity a novel chaotic-type inflationary scenario driven by the radial parts of a conjugate pair of Higgs superfields causing the spontaneous breaking of a grand unified gauge symmetry at a scale assuming the value of the supersymmetric grand unification scale. The superpotential is uniquely determined at the renormalizable level by the gauge symmetry and a continuous R symmetry. We select two types of Kahler potentials, which respect these symmetries as well as an approximate shift symmetry. In particular, they include in a logarithm a dominant shift-symmetric term proportional to a parameter c together with a small term violating this symmetry and characterized by a parameter c(+). In both cases, imposing a lower bound on c, inflation can be attained with subplanckian values of the original inflaton, while the corresponding effective theory respects perturbative unitarity for r +/- = c(+)/c_ <= 1. These inflationary models do not lead to overproduction of cosmic defects, are largely independent of the one-loop radiative corrections and accommodate, for natural values of r +/-, observable gravitational waves consistently with all the current observational data. The inflaton mass is mostly confined in the range (3.7 – 8.1) x 10(10) GeV.
Address [Lazaries, G.] Aristotle Univ Thessaloniki, Fac Engn, Sch Elect & Comp Engn, GR-54124 Thessaloniki, Greece, Email: lazaride@eng.auth.gr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000365101200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2467
Permanent link to this record
 

 
Author Beneke, M.; Hellmann, C.; Ruiz-Femenia, P.
Title Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos III. Computation of the Sommerfeld enhancements Type Journal Article
Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages (up) 115 - 57pp
Keywords Cosmology of Theories beyond the SM; Supersymmetric Standard Model; Nonperturbative Effects
Abstract This paper concludes the presentation of the non-relativistic effective field theory formalism designed to calculate the radiative corrections that enhance the pair-annihilation cross sections of slowly moving neutralinos and charginos within the general minimal supersymmetric standard model (MSSM). While papers I and II focused on the computation of the tree-level annihilation rates that feed into the short-distance part, here we describe in detail the method to obtain the Sommerfeld factors that contain the enhanced long-distance corrections. This includes the computation of the potential interactions in the MSSM, which are provided in compact analytic form, and a novel solution of the multi-state Schrodinger equation that is free from the numerical instabilities generated by large mass splittings between the scattering states. Our results allow for a precise computation of the MSSM neutralino dark matter relic abundance and pair-annihilation rates in the present Universe, when Sommerfeld enhancements are important.
Address [Beneke, M.; Hellmann, C.] Tech Univ Munich, Phys Dept T31, D-85748 Garching, Germany, Email: charlotte.hellmann@tum.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000354959300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2235
Permanent link to this record
 

 
Author Escudero, M.; Lopez-Pavon, J.; Rius, N.; Sandner, S.
Title Relaxing cosmological neutrino mass bounds with unstable neutrinos Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages (up) 119 - 44pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Neutrino Physics
Abstract At present, cosmological observations set the most stringent bound on the neutrino mass scale. Within the standard cosmological model (Lambda CDM), the Planck collaboration reports Sigma m(v)< 0.12 eV at 95 % CL. This bound, taken at face value, excludes many neutrino mass models. However, unstable neutrinos, with lifetimes shorter than the age of the universe <tau>(nu) less than or similar to t(U), represent a particle physics avenue to relax this constraint. Motivated by this fact, we present a taxonomy of neutrino decay modes, categorizing them in terms of particle content and final decay products. Taking into account the relevant phenomenological bounds, our analysis shows that 2-body decaying neutrinos into BSM particles are a promising option to relax cosmological neutrino mass bounds. We then build a simple extension of the type I seesaw scenario by adding one sterile state nu (4) and a Goldstone boson phi, in which nu (i)-> nu (4)phi decays can loosen the neutrino mass bounds up to Sigma m(v) similar to 1 eV, without spoiling the light neutrino mass generation mechanism. Remarkably, this is possible for a large range of the right-handed neutrino masses, from the electroweak up to the GUT scale. We successfully implement this idea in the context of minimal neutrino mass models based on a U(1)(mu-tau) flavor symmetry, which are otherwise in tension with the current bound on Sigma m(v).
Address [Escudero, Miguel] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: miguel.escudero@kcl.ac.uk;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000601400500005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4661
Permanent link to this record
 

 
Author Caron, S.; Casas, J.A.; Quilis, J.; Ruiz de Austri, R.
Title Anomaly-free dark matter with harmless direct detection constraints Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages (up) 126 - 24pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM
Abstract Dark matter (DM) interacting with the SM fields via a Z-boson (Z-portal') remains one of the most attractive WIMP scenarios, both from the theoretical and the phenomenological points of view. In order to avoid the strong constraints from direct detection and dilepton production, it is highly convenient that the Z has axial coupling to DM and leptophobic couplings to the SM particles, respectively. The latter implies that the associated U(1) coincides with baryon number in the SM sector. In this paper we completely classify the possible anomaly-free leptophobic Z with minimal dark sector, including the cases where the coupling to DM is axial. The resulting scenario is very predictive and perfectly viable from the present constraints from DM detection, EW observables and LHC data (di-lepton, di-jet and mono-jet production). We analyze all these constraints, obtaining the allowed areas in the parameter space, which generically prefer mZ less than or similar to 500 GeV, apart from resonant regions. The best chances to test these viable areas come from future LHC measurements.
Address [Caron, S.] Radboud Univ Nijmegen, Fac Sci, Inst Math Astrophys & Particle Phys, Mailbox 79,POB 9010, NL-6500 GL Nijmegen, Netherlands, Email: scaron@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000454274400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3856
Permanent link to this record