toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Boronat, M.; Fullana, E.; Fuster, J.; Gomis, P.; Hoang, A.H.; Widl, A.; Mateu, V.; Vos, M. url  doi
openurl 
  Title Top quark mass measurement in radiative events at electron-positron colliders Type Journal Article
  Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 804 Issue Pages (down) 135353 - 9pp  
  Keywords  
  Abstract In this letter, we evaluate the potential of linear e(+)e(-) colliders to measure the top quark mass in radiative events and in a suitable short-distance scheme. We present a calculation of the differential cross section for production of a top quark pair in association with an energetic photon from initial state radiation, as a function of the invariant mass of the t (t) over bar. This matchedcalculation includes the QCD enhancement of the cross section around the t (t) over bar production threshold and remains valid in the continuum well above the threshold. The uncertainty in the top mass determination is evaluated in realistic operating scenarios for the Compact Linear Collider (CLIC) and the International Linear Collider (ILC), including the statistical uncertainty and the theoretical and experimental systematic uncertainties. With this method, the top quark mass can be determined with a precision of 110 MeV in the initial stage of CLIC, with 1 ab(-1) at root s = 380 GeV, and with a precision of approximately 150 MeV at the ILC, with L = 4 ab(-1) at root s = 500GeV. Radiative events allow measurements of the top quark mass at different renormalization scales, and we demonstrate that such a measurement can yield a statistically significant test of the evolution of the MSR mass m(t)(MSR)(R) for scales R < m(t).  
  Address [Boronat, M.; Fullana, E.; Fuster, J.; Gomis, P.; Vos, M.] Univ Valencia, Inst Fis Corpuscular, CSIC, C Catedratico J Beltran, Valencia 46980, Spain, Email: pablo.gomis@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000548740300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4463  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Alvarez Piqueras, D.; Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moreno Llacer, M.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Evidence for electroweak production of two jets in association with a Z gamma pair in pp collisions at root S=13 TeV with the ATLAS detector Type Journal Article
  Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 803 Issue Pages (down) 135341 - 23pp  
  Keywords  
  Abstract Evidence for electroweak production of two jets in association with a Z gamma pair in root s = 13 TeV proton-proton collisions at the Large Hadron Collider is presented. The analysis uses data collected by the ATLAS detector in 2015 and 2016 that corresponds to an integrated luminosity of 36.1 fb(-1). Events that contain a Z boson candidate decaying leptonically into either e(+)e(-) or mu(+)mu(-), a photon, and two jets are selected. The electroweak component is measured with observed and expected significances of 4.1 standard deviations. The fiducial cross-section for electroweak production is measured to be sigma(Z gamma jj-Ew) = 7.8 +/- 2.0 fb, in good agreement with the Standard Model prediction.  
  Address [Deliot, F.; Duvnjak, D.; Jackson, P.; Kong, A. X. Y.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000521730300023 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4354  
Permanent link to this record
 

 
Author Liang, W.H.; Ikeno, N.; Oset, E. url  doi
openurl 
  Title Upsilon(nl) decay into B(*) (B)over-bar(*) Type Journal Article
  Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 803 Issue Pages (down) 135340 - 6pp  
  Keywords  
  Abstract We have evaluated the decay modes of the Upsilon(4s), Upsilon(3d), Upsilon(5s), Upsilon(6s) states into B (B) over bar, B (B) over bar* + c.c., B* (B) over bar*, B-s(B) over bar (s), B-s(B) over bar (s)* + c.c., B-s* (B) over bar (s)* using the P-3(0) model to hadronize the bb vector seed, fitting some parameters to the data. We observe that the Upsilon(4s) state has an abnormally large amount of mesonmeson components in the wave function, while the other states are largely b (b) over bar. We predict branching ratios for the different decay channels which can be contrasted with experiment for the case of the Upsilon(5s) state. While globally the agreement is fair, we call the attention to some disagreement that could be a warning for the existence of more elaborate components in the state.  
  Address [Liang, Wei-Hong; Oset, Eulogio] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China, Email: liangwh@gxnu.edu.cn;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000521730300046 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4355  
Permanent link to this record
 

 
Author Molina, R.; Xie, J.J.; Liang, W.H.; Geng, L.S.; Oset, E. url  doi
openurl 
  Title Theoretical interpretation of the D-s(+) -> pi(+)pi(0)eta decay and the nature of a(0)(980) Type Journal Article
  Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 803 Issue Pages (down) 135279 - 4pp  
  Keywords  
  Abstract In a recent paper [I], the BESIII Collaboration reported the so-called first observation of pure W-annihi- lation decays D-s(+) -> a(0)(+) (980)pi(0) and D-s(+) -> a(0)(0)(980)pi(+). The measured absolute branching fractions are, however, puzzlingly larger than those of other measured pure W-annihilation decays by at least one order of magnitude. In addition, the relative phase between the two decay modes is found to be about 0 degrees. In this letter, we show that all these can be easily understood if the a(0)(980) is a dynamically generated state from (K) over barK and pi eta interactions in coupled channels. In such a scenario, the D-s(+) decay proceeds via internal W emission instead of W-annihilation, which has a larger decay rate than W-annihilation. The proposed decay mechanism and the molecular nature of the a(0)(980) also provide a natural explanation to the measured negative interference between the two decay modes.  
  Address [Molina, Raquel; Liang, Wei-Hong; Oset, Eulogio] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China, Email: raqumoli@ucm.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000521730300066 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4356  
Permanent link to this record
 

 
Author Bejarano, C.; Delhom, A.; Jimenez-Cano, A.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Geometric inequivalence of metric and Palatini formulations of General Relativity Type Journal Article
  Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 802 Issue Pages (down) 135275 - 4pp  
  Keywords  
  Abstract Projective invariance is a symmetry of the Palatini version of General Relativity which is not present in the metric formulation. The fact that the Riemann tensor changes nontrivially under projective transformations implies that, unlike in the usual metric approach, in the Palatini formulation this tensor is subject to a gauge freedom, which allows some ambiguities even in its scalar contractions. In this sense, we show that for the Schwarzschild solution there exists a projective gauge in which the (affine) Kretschmann scalar, K (R beta μnu R alpha beta μnu)-R-alpha, can be set to vanish everywhere. This puts forward that the divergence of curvature scalars may, in some cases, be avoided by a gauge transformation of the connection.  
  Address [Bejarano, Cecilia] UBA, CONICET, IAFE, Casilla Correo 67,Sucursal 28, RA-1428 Buenos Aires, DF, Argentina, Email: cbejarano@iafe.uba.ar;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000515091400031 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4348  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva