toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author n_TOF Collaboration (Tagliente, G. et al.); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title (96)Zr(n,gamma) measurement at the n_TOF facility at CERN Type Journal Article
  Year 2011 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 84 Issue 5 Pages (down) 055802 - 8pp  
  Keywords  
  Abstract The (n,gamma) cross section of (96)Zr has been investigated at the CERN n_TOF spallation neutron source. High-resolution time-of-flight measurements using an enriched ZrO(2) sample allowed us to analyze 15 resonances below 40 keV with improved accuracy. On average, the capture widths were found to be 25% smaller than reported in earlier experiments. If complemented with the contribution by direct radiative capture, the derived Maxwellian averaged cross sections are consistent with activation data at kT = 25 keV. The present results confirm the astrophysical implications for the s-process branching at (95)Zr.  
  Address [Tagliente, G; Colonna, N; Marrone, S; Terlizzi, R] Ist Nazl Fis Nucl, I-70126 Bari, Italy, Email: giuseppe.tagliente@ba.infn.it  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000297121100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 812  
Permanent link to this record
 

 
Author n_TOF Collaboration (Tagliente, G. et al.); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title The Zr-92(n,gamma) reaction and its implications for stellar nucleosynthesis Type Journal Article
  Year 2010 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 81 Issue 5 Pages (down) 055801 - 9pp  
  Keywords  
  Abstract Because the relatively small neutron capture cross sections of the zirconium isotopes are difficult to measure, the results of previous measurements are often not adequate for a number of problems in astrophysics and nuclear technology. Therefore, the Zr-92(n,gamma) cross section has been remeasured at the CERN n_TOF facility, providing a set of improved parameters for 44 resonances in the neutron energy range up to 40 keV. With this information the cross-section uncertainties in the keV region could be reduced to 5% as required for s-process nucleosynthesis studies and technological applications.  
  Address [Tagliente, G.; Colonna, N.; Marrone, S.; Terlizzi, R.] Ist Nazl Fis Nucl, I-70126 Bari, Italy, Email: giuseppe.tagliente@ba.infn.it  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000278144800074 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 444  
Permanent link to this record
 

 
Author n_TOF Collaboration (Mendoza, E. et al); Giubrone, G.; Tain, J.L.; Tarifeño-Saldivia, A. doi  openurl
  Title Measurement and analysis of the Am-241 neutron capture cross section at the n_TOF facility at CERN Type Journal Article
  Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 97 Issue 5 Pages (down) 054616 - 21pp  
  Keywords  
  Abstract The Am-241(n, gamma) cross section has been measured at the nTOF facility at CERN with the nTOF BaF2 Total Absorption Calorimeter in the energy range between 0.2 eV and 10 keV. Our results are analyzed as resolved resonances up to 700 eV, allowing a more detailed description of the cross section than in the current evaluations, which contain resolved resonances only up to 150-160 eV. The cross section in the unresolved resonance region is perfectly consistent with the predictions based on the average resonance parameters deduced from the resolved resonances, thus obtaining a consistent description of the cross section in the full neutron energy range under study. Below 20 eV, our results are in reasonable agreement with JEFF-3.2 as well as with the most recent direct measurements of the resonance integral, and differ up to 20-30% with other experimental data. Between 20 eV and 1 keV, the disagreement with other experimental data and evaluations gradually decreases, in general, with the neutron energy. Above 1 keV, we find compatible results with previously existing values.  
  Address [Mendoza, E.; Cano-Ott, D.; Balibrea, J.; Becares, V; Garcia, A. R.; Gonzalez, E.; Lopez, D.; Martinez, T.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain, Email: emilio.mendoza@ciemat.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000433032300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3584  
Permanent link to this record
 

 
Author Briz, J.A.; Nacher, E.; Borge, M.J.G.; Algora, A.; Rubio, B.; Dessagne, P.; Maira, A.; Cano-Ott, D.; Courtin, S.; Escrig, D.; Fraile, L.M.; Gelletly, W.; Jungclaus, A.; Le Scornet, G.; Marechal, F.; Miehe, C.; Poirier, E.; Poves, A.; Sarriguren, P.; Tain, J.L.; Tengblad, O. doi  openurl
  Title Shape study of the N = Z nucleus Kr-72 via beta decay Type Journal Article
  Year 2015 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 92 Issue 5 Pages (down) 054326 - 10pp  
  Keywords  
  Abstract The beta decay of the N = Z nucleus Kr-72 has been studied with the total absorption spectroscopy technique at ISOLDE (CERN). A total B(GT) = 0.79(4)g(A)(2)/4 pi has been found up to an excitation energy of 2.7 MeV. The B(GT) distribution obtained is compared with predictions from state-of-the-art theoretical calculations to learn about the ground state deformation of Kr-72. Although a dominant oblate deformation is suggested by direct comparison with quasiparticle random phase approximation (QRPA) calculations, beyond-mean-field and shell-model calculations favor a large oblate-prolate mixing in the ground state.  
  Address [Briz, J. A.; Nacher, E.; Borge, M. J. G.; Maira, A.; Escrig, D.; Jungclaus, A.; Sarriguren, P.; Tengblad, O.] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain, Email: jose.briz@subatech.in2p3.fr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000365867500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2486  
Permanent link to this record
 

 
Author n_TOF Collaboration (Dietz, M. et al); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title Measurement of the Ge-72(n, y) cross section over a wide neutron energy range at the CERN n_TOF facility Type Journal Article
  Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 103 Issue 4 Pages (down) 045809 - 8pp  
  Keywords  
  Abstract The Ge-72(n, gamma) cross section was measured for neutron energies up to 300 keV at the neutron time-of-flight facility n_TOF (CERN), Geneva, for the first time covering energies relevant to heavy-element synthesis in stars. The measurement was performed at the high-resolution beamline EAR-1, using an isotopically enriched (GeO2)-Ge-72 sample. The prompt capture gamma rays were detected with four liquid scintillation detectors, optimized for low neutron sensitivity. We determined resonance capture kernels up to a neutron energy of 43 keV, and averaged cross sections from 43 to 300 keV. Maxwellian-averaged cross section values were calculated from kT = 5 to 100 keV, with uncertainties between 3.2% and 7.1%. The new results significantly reduce uncertainties of abundances produced in the slow neutron capture process in massive stars.  
  Address [Dietz, M.; Lederer-Woods, C.; Tattersall, A.; Battino, U.; Kahl, D.; Lonsdale, S. J.; Woods, P. J.] Univ Edinburgh, Sch Phys & Astron, Edinburgh, Midlothian, Scotland, Email: mirco.dietz@ptb.de  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000647603800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4811  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva