Cepedello, R., Esser, F., Hirsch, M., & Sanz, V. (2023). SMEFT goes dark: Dark Matter models for four-fermion operators. J. High Energy Phys., 09(9), 081–47pp.
Abstract: We study ultra-violet completions for d = 6 four-fermion operators in the standard model effective field theory (SMEFT), focusing on models that contain cold dark matter candidates. Via a diagrammatic method, we generate systematically lists of possible UV completions, with the aim of providing sets of models, which are complete under certain, well specified assumptions. Within these lists of models we rediscover many known DM models, as diverse as R-parity conserving supersymmetry or the scotogenic neutrino mass model. Our lists, however, also contain many new constructions, which have not been studied in the literature so far. We also briefly discuss how our DM models could be constrained by reinterpretations of LHC searches and the prospects for HL-LHC and future lepton colliders.
|
Esser, F., Madigan, M., Sanz, V., & Ubiali, M. (2023). On the coupling of axion-like particles to the top quark. J. High Energy Phys., 09(9), 063–39pp.
Abstract: In this paper we explore the coupling of a light axion-like particle (ALP) to top quarks. We use high-energy LHC probes, and examine both the direct probe to this coupling in associated production of a top-pair with an ALP, and the indirect probe through loop-induced gluon fusion to an ALP leading to top pairs. Using the latest LHC Run II data, we provide the best limit on this coupling. We also compare these limits with those obtained from loop-induced couplings in diboson final states, finding that the +MET channel is the best current handle on this coupling.
|
Khosa, C. K., & Sanz, V. (2023). Anomaly Awareness. SciPost Phys., 15(2), 053–24pp.
Abstract: We present a new algorithm for anomaly detection called Anomaly Awareness. The algorithm learns about normal events while being made aware of the anomalies through a modification of the cost function. We show how this method works in different Particle Physics situations and in standard Computer Vision tasks. For example, we apply the method to images from a Fat Jet topology generated by Standard Model Top and QCD events, and test it against an array of new physics scenarios, including Higgs production with EFT effects and resonances decaying into two, three or four subjets. We find that the algorithm is effective identifying anomalies not seen before, and becomes robust as we make it aware of a varied-enough set of anomalies.
|
Khosa, C. K., Sanz, V., & Soughton, M. (2022). A simple guide from machine learning outputs to statistical criteria in particle physics. SciPost Phys. Core, 5(4), 050–31pp.
Abstract: In this paper we propose ways to incorporate Machine Learning training outputs into a study of statistical significance. We describe these methods in supervised classification tasks using a CNN and a DNN output, and unsupervised learning based on a VAE. As use cases, we consider two physical situations where Machine Learning are often used: high-pT hadronic activity, and boosted Higgs in association with a massive vector boson.
|
Escudero, M., Rius, N., & Sanz, V. (2017). Sterile neutrino portal to Dark Matter I: the U(1)(B-L) case. J. High Energy Phys., 02(2), 045–27pp.
Abstract: In this paper we explore the possibility that the sterile neutrino and Dark Matter sectors in the Universe have a common origin. We study the consequences of this assumption in the simple case of coupling the dark sector to the Standard Model via a global U(1)(B-L), broken down spontaneously by a dark scalar. This dark scalar provides masses to the dark fermions and communicates with the Higgs via a Higgs portal coupling. We find an interesting interplay between Dark Matter annihilation to dark scalars – the CP-even that mixes with the Higgs and the CP-odd which becomes a Goldstone boson, the Majoron and heavy neutrinos, as well as collider probes via the coupling to the Higgs. Moreover, Dark Matter annihilation into sterile neutrinos and its subsequent decay to gauge bosons and quarks, charged leptons or neutrinos lead to indirect detection signatures which are close to current bounds on the gamma ray flux from the galactic center and dwarf galaxies.
|