|   | 
Details
   web
Records
Author Helo, J.C.; Hirsch, M.; Ota, T.; Pereira dos Santos, F.A.
Title Double beta decay and neutrino mass models Type Journal Article
Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages (up) 092 - 40pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract Neutrinoless double beta decay allows to constrain lepton number violating extensions of the standard model. If neutrinos are Majorana particles, the mass mechanism will always contribute to the decay rate, however, it is not a priori guaranteed to be the dominant contribution in all models. Here, we discuss whether the mass mechanism dominates or not from the theory point of view. We classify all possible (scalar-mediated) short-range contributions to the decay rate according to the loop level, at which the corresponding models will generate Majorana neutrino masses, and discuss the expected relative size of the different contributions to the decay rate in each class. Our discussion is general for models based on the SM group but does not cover models with an extended gauge. We also work out the phenomenology of one concrete 2-loop model in which both, mass mechanism and short-range diagram, might lead to competitive contributions, in some detail.
Address [Helo, J. C.] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Valparaiso, Chile, Email: juancarlos.helo@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000363471700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2441
Permanent link to this record
 

 
Author Esteves, J.N.; Romao, J.C.; Hirsch, M.; Porod, W.; Staub, F.; Vicente, A.
Title Dark matter and LHC phenomenology in a left-right supersymmetric model Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages (up) 095 - 33pp
Keywords Supersymmetry Phenomenology
Abstract Left-right symmetric extensions of the Minimal Supersymmetric Standard Model can explain neutrino data and have potentially interesting phenomenology beyond that found in minimal SUSY seesaw models. Here we study a SUSY model in which the left-right symmetry is broken by triplets at a high scale, but significantly below the GUT scale. Sparticle spectra in this model differ from the usual constrained MSSM expectations and these changes affect the relic abundance of the lightest neutralino. We discuss changes for the standard stau (and stop) co-annihilation, the Higgs funnel and the focus point regions. The model has potentially large lepton flavour violation in both, left and right, scalar leptons and thus allows, in principle, also for flavoured co-annihilation. We also discuss lepton flavour signals due to violating decays of the second lightest neutralino at the LHC, which can be as large as 20 fb(-1) at root s = 14 TeV.
Address [Esteves, J. N.; Romao, J. C.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Valencia 46071, Spain, Email: joaomest@cftp.ist.utl.pt
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000300183300012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 943
Permanent link to this record
 

 
Author Escribano, P.; Hirsch, M.; Nava, J.; Vicente, A.
Title Observable flavor violation from spontaneous lepton number breaking Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages (up) 098 - 31pp
Keywords Beyond Standard Model; Neutrino Physics; Global Symmetries
Abstract We propose a simple model of spontaneous lepton number violation with potentially large flavor violating decays, including the possibility that majoron emitting decays, such as μ-> e J, saturate the experimental bounds. In this model the majoron is a singlet-doublet admixture. It generates a type-I seesaw for neutrino masses and contains also a vector-like lepton. As a by-product, the model can explain the anomalous (g – 2)(mu), in parts of its parameter space, where one expects that the branching ratio of the Higgs to muons is changed with respect to Standard Model expectations. However, the explanation of the muon g – 2 anomaly would lead to tension with recent astrophysical bounds on the majoron coupling to muons.
Address [Escribano, Pablo; Hirsch, Martin; Nava, Jacopo; Vicente, Avelino] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,C Catedrcit Jose Beltrcin 2, E-46980 Valencia, Spain, Email: pablo.escribano@ifis.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000744514600003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5084
Permanent link to this record
 

 
Author Hirsch, M.; Kernreiter, T.; Romao, J.C.; del Moral, A.V.
Title Minimal supersymmetric inverse seesaw: neutrino masses, lepton flavour violation and LHC phenomenology Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages (up) 103 - 21pp
Keywords Rare Decays; Beyond Standard Model; Neutrino Physics; Supersymmetric Standard Model
Abstract We study neutrino masses in the framework of the supersymmetric inverse seesaw model. Different from the non-supersymmetric version a minimal realization with just one pair of singlets is sufficient to explain all neutrino data. We compute the neutrino mass matrix up to 1-loop order and show how neutrino data can be described in terms of the model parameters. We then calculate rates for lepton flavour violating (LFV) processes, such as μ-> e gamma and chargino decays to singlet scalar neutrinos. The latter decays are potentially observable at the LHC and show a characteristic decay pattern dictated by the same parameters which generate the observed large neutrino angles.
Address [Hirsch, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000273959700030 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 509
Permanent link to this record
 

 
Author Hirsch, M.; Joaquim, F.R.; Vicente, A.
Title Constrained SUSY seesaws with a 125 GeV Higgs Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages (up) 105 - 33pp
Keywords Higgs Physics; Rare Decays; Neutrino Physics; Supersymmetric Standard Model
Abstract Motivated by the ATLAS and CMS discovery of a Higgs-like boson with a mass around 125 GeV, and by the need of explaining neutrino masses, we analyse the three canonical SUSY versions of the seesaw mechanism (type I, II and III) with CMSSM boundary conditions. In type II and III cases, SUSY particles are lighter than in the CMSSM (or the constrained type I seesaw), for the same set of input parameters at the universality scale. Thus, to explain m(h0) similar or equal to 125 GeV at low energies, one is forced into regions of parameter space with very large values of m(0), M-1/2 or A(0). We compare the squark and gluino masses allowed by the ATLAS and CMS ranges for m(h0) (extracted from the 2011-2012 data), and discuss the possibility of distinguishing seesaw models in view of future results on SUSY searches. In particular, we briefly comment on the discovery potential of LHC upgrades, for squark/gluino mass ranges required by present Higgs mass constraints. A discrimination between different seesaw models cannot rely on the Higgs mass data alone, therefore we also take into account the MEG upper limit on BR(mu -> e gamma) and show that, in some cases, this may help to restrict the SUSY parameter space, as well as to set complementary limits on the seesaw scale.
Address [Hirsch, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000312198500040 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1301
Permanent link to this record