|   | 
Details
   web
Records
Author Casals, M.; Fabbri, A.; Martinez, C.; Zanelli, J.
Title Quantum-corrected rotating black holes and naked singularities in (2+1) dimensions Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 99 Issue 10 Pages (down) 104023 - 39pp
Keywords
Abstract We analytically investigate the perturbative effects of a quantum conformally coupled scalar field on rotating (2 + 1)-dimensional black holes and naked singularities. In both cases we obtain the quantum-back-reacted metric analytically. In the black hole case, we explore the quantum corrections on different regions of relevance for a rotating black hole geometry. We find that the quantum effects lead to a growth of both the event horizon and the ergosphere, as well as to a reduction of the angular velocity compared to their corresponding unperturbed values. Quantum corrections also give rise to the formation of a curvature singularity at the Cauchy horizon and show no evidence of the appearance of a superradiant instability. In the naked singularity case, quantum effects lead to the formation of a horizon that hides the conical defect, thus turning it into a black hole. The fact that these effects occur not only for static but also for spinning geometries makes a strong case for the role of quantum mechanics as a cosmic censor in Nature.
Address [Casals, Marc] CBPF, BR-22290180 Rio De Janeiro, Brazil, Email: mcasals@cbpf.br;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000509560700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4263
Permanent link to this record
 

 
Author Lobo, F.S.N.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D.; Rustam, A.
Title Structure and stability of traversable thin-shell wormholes in Palatini f(R) gravity Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 10 Pages (down) 104012 - 11pp
Keywords
Abstract We study the structure and stability of traversable wormholes built as (spherically symmetric) thin shells in the context of Palatini f(R) gravity. Using a suitable junction formalism for these theories we find that the effective number of degrees of freedom on the shell is reduced to a single one, which fixes the equation of state to be that of massless stress-energy fields, contrary to the general relativistic and metric f(R) cases. Another major difference is that the surface energy density threading the thin shell, needed in order to sustain the wormhole, can take any sign and may even vanish, depending on the desired features of the corresponding solutions. We illustrate our results by constructing thin-shell wormholes by surgically grafting Schwarzschild space-times and show that these configurations are always linearly unstable. However, surgically joined Reissner-Nordstrom space-times allow for linearly stable, traversable thin-shell wormholes supported by a positive energy density provided that the (squared) mass-to-charge ratio, given by y = Q(2)/M-2, satisfies the constraint 1 < y < 9/8 (corresponding to overcharged Reissner-Nordstrom configurations having a photon sphere) and lies in a region bounded by specific curves defined in terms of the (dimensionless) radius of the shell x(0) = R/M.
Address [Lobo, Francisco S. N.] Univ Lisbon, Fac Ciencias, Inst Astrofis & Ciencias Espaco, Edificio C8,Campo Grande, P-1749016 Lisbon, Portugal, Email: fslobo@fc.ul.pt;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000587286200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4596
Permanent link to this record
 

 
Author Martinez-Asencio, J.; Olmo, G.J.; Rubiera-Garcia, D.
Title Black hole formation from a null fluid in extended Palatini gravity Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 10 Pages (down) 104010 - 8pp
Keywords
Abstract We study the formation and perturbation of black holes by null fluxes of neutral matter in a quadratic extension of general relativity formulated a la Palatini. Working in a spherically symmetric space-time, we obtain an exact analytical solution for the metric that extends the usual Vaidya-type solution to this type of theory. We find that the resulting space-time is formally that of a Reissner-Nordstrom black hole but with an effective charge term carrying the wrong sign in front of it. This effective charge is directly related to the luminosity function of the radiation stream. When the ingoing flux vanishes, the charge term disappears and the space-time relaxes to that of a Schwarzschild black hole. We provide two examples that illustrate the formation of a black hole from Minkowski space and the perturbation by a finite pulse of radiation of an existing Schwarzschild black hole.
Address [Martinez-Asencio, Jesus; Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000310686900007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1202
Permanent link to this record
 

 
Author Bambi, C.; Olmo, G.J.; Rubiera-Garcia, D.
Title Melvin universe in Born-Infeld gravity Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue 10 Pages (down) 104010 - 6pp
Keywords
Abstract We consider a magnetic flux pointing in the z direction of an axially symmetric space-time (Melvin universe) in a Born-Infeld-type extension of general relativity (GR) formulated in the Palatini approach. Large magnetic fields could have been produced in the early Universe, and given rise to interesting phenomenology regarding wormholes and black hole remnants. We find a formal analytic solution to this problem that recovers the GR result in the appropriate limits. Our results set the basis for further extensions that could allow the embedding of pairs of black hole remnants in geometries with intense magnetic fields.
Address [Bambi, Cosimo; Rubiera-Garcia, D.] Fudan Univ, Ctr Field Theory & Particle Phys, Shanghai 200433, Peoples R China, Email: bambi@fudan.edu.cn;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000354368000004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2222
Permanent link to this record
 

 
Author Lopez-Honorez, L.; Mena, O.; Palomares-Ruiz, S.; Villanueva-Domingo, P.
Title Warm dark matter and the ionization history of the Universe Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 10 Pages (down) 103539 - 14pp
Keywords
Abstract In warm dark matter scenarios structure formation is suppressed on small scales with respect to the cold dark matter case, reducing the number of low-mass halos and the fraction of ionized gas at high redshifts and thus, delaying reionization. This has an impact on the ionization history of the Universe and measurements of the optical depth to reionization, of the evolution of the global fraction of ionized gas and of the thermal history of the intergalactic medium, can be used to set constraints on the mass of the dark matter particle. However, the suppression of the fraction of ionized medium in these scenarios can be partly compensated by varying other parameters, as the ionization efficiency or the minimum mass for which halos can host star-forming galaxies. Here we use different data sets regarding the ionization and thermal histories of the Universe and, taking into account the degeneracies from several astrophysical parameters, we obtain a lower bound on the mass of thermal warm dark matter candidates of m(X) > 1.3 keV, or m(s) > 5.5 keV for the case of sterile neutrinos nonresonantly produced in the early Universe, both at 90% confidence level.
Address [Lopez-Honorez, Laura] Univ Libre Bruxelles, Serv Phys Theor, CP225,Bld Triomphe, B-1050 Brussels, Belgium
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000416238500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3390
Permanent link to this record
 

 
Author Giare, W.; Mena, O.; Di Valentino, E.
Title Lensing impact on cosmic relics and tensions Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 10 Pages (down) 103539 - 9pp
Keywords
Abstract Cosmological bounds on neutrinos and additional hypothetical light thermal relics, such as QCD axions, are currently among the most restrictive ones. These limits mainly rely on cosmic microwave background temperature anisotropies. Nonetheless, one of the largest cosmological signatures of thermal relics is that on gravitational lensing, due to their free-streaming behavior before their nonrelativistic period. We investigate late-time only hot-relic mass constraints, primarily based on recently released lensing data from the Atacama Cosmology Telescope, both alone and in combination with lensing data from the Planck satellite. Additionally, we consider other local probes, such as baryon acoustic oscillations measurements, shear-shear, galaxy-galaxy, and galaxy-shear correlation functions from the dark energy survey, and distance moduli measurements from Type-Ia Supernovae. The tightest bounds we find are Sigma m(v) < 0.43 eV and m(a) < 1.1 eV, both at 95% CL Interestingly, these limits are still much stronger than those found on e.g., laboratory neutrino mass searches, reassessing the robustness of the extraction of thermal relic properties via cosmological observations. In addition, when considering lensing-only data, the significance of the Hubble constant tension is considerably reduced, while the clustering parameter sigma 8 controversy is completely absent.
Address [Giare, William] Univ Sheffield, Sch Math & Stat, Consortium Fundamental Phys, Hounsfield Rd, Sheffield S3 7RH, England, Email: w.giare@sheffield.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001121804800014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5862
Permanent link to this record
 

 
Author Servant, G.; Simakachorn, P.
Title Ultrahigh frequency primordial gravitational waves beyond the kHz: The case of cosmic strings Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 10 Pages (down) 103538 - 24pp
Keywords
Abstract We investigate gravitational -wave backgrounds (GWBs) of primordial origin that would manifest only at ultrahigh frequencies, from kilohertz to 100 gigahertz, and leave no signal at LIGO, the Einstein Telescope, the Cosmic Explorer, LISA, or pulsar -timing arrays. We focus on GWBs produced by cosmic strings and make predictions for the GW spectra scanning over high-energy scale (beyond 10 10 GeV) particle physics parameters. Signals from local string networks can easily be as large as the big bang nucleosynthesis/ cosmic microwave background bounds, with a characteristic strain as high as 10 – 26 in the 10 kHz band, offering prospects to probe grand unification physics in the 10 14 -10 17 GeV energy range. In comparison, GWB from axionic strings is suppressed (with maximal characteristic strain similar to 10 – 31 ) due to the early matter era induced by the associated heavy axions. We estimate the needed reach of hypothetical futuristic GW detectors to probe such GWB and, therefore, the corresponding high-energy physics processes. Beyond the information of the symmetry -breaking scale, the high -frequency spectrum encodes the microscopic structure of the strings through the position of the UV cutoffs associated with cusps and kinks, as well as potential information about friction forces on the string. The IR slope, on the other hand, reflects the physics responsible for the decay of the string network. We discuss possible strategies for reconstructing the scalar potential, particularly the scalar self -coupling, from the measurement of the UV cutoff of the GW spectrum.
Address [Servant, Geraldine] Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: peera.simakachorn@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001238459100006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6150
Permanent link to this record
 

 
Author Martinelli, M.; Lopez Honorez, L.; Melchiorri, A.; Mena, O.
Title Future CMB cosmological constraints in a dark coupled universe Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 81 Issue 10 Pages (down) 103534 - 7pp
Keywords
Abstract Cosmic microwave background satellite missions as the ongoing Planck experiment are expected to provide the strongest constraints on a wide set of cosmological parameters. Those constraints, however, could be weakened when the assumption of a cosmological constant as the dark energy component is removed. Here we show that it will indeed be the case when there exists a coupling among the dark energy and the dark matter fluids. In particular, the expected errors on key parameters as the cold dark matter density and the angular diameter distance at decoupling are significantly larger when a dark coupling is introduced. We show that it will be the case also for future satellite missions as EPIC, unless CMB lensing extraction is performed.
Address [Martinelli, Matteo; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000278146700047 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 429
Permanent link to this record
 

 
Author Witte, S.; Villanueva-Domingo, P.; Gariazzo, S.; Mena, O.; Palomares-Ruiz, S.
Title EDGES result versus CMB and low-redshift constraints on ionization histories Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 10 Pages (down) 103533 - 8pp
Keywords
Abstract We examine the results from the Experiment to Detect the Global Epoch of Reionization Signature (EDGES), which has recently claimed the detection of a strong absorption in the 21 cm hyperfine transition line of neutral hydrogen, at redshifts demarcating the early stages of star formation. More concretely, we study the compatibility of the shape of the EDGES absorption profile, centered at a redshift of z similar to 17.2, with measurements of the reionization optical depth, the Gunn-Peterson optical depth, and Lyman-alpha emission from star-forming galaxies, for a variety of possible reionization models within the standard ACDM framework (that is, a Universe with a cosmological constant. and cold dark matter CDM). When, conservatively, we only try to accommodate the location of the absorption dip, we identify a region in the parameter space of the astrophysical parameters that successfully explains all of the aforementioned observations. However, one of the most abnormal features of the EDGES measurement is the absorption amplitude, which is roughly a factor of 2 larger than the maximum allowed value in the ACDM framework. We point out that the simple considered astrophysical models that produce the largest absorption amplitudes are unable to explain the depth of the dip and of reproducing the observed shape of the absorption profile.
Address [Witte, Samuel; Villanueva-Domingo, Pablo; Gariazzo, Stefano; Mena, Olga; Palomares-Ruiz, Sergio] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000433291600010 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3606
Permanent link to this record
 

 
Author Caputo, A.; Liu, H.W.; Mishra-Sharma, S.; Ruderman, J.T.
Title Modeling dark photon oscillations in our inhomogeneous Universe Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 10 Pages (down) 103533 - 26pp
Keywords
Abstract A dark photon may kinetically mix with the Standard Model photon, leading to observable cosmological signatures. The mixing is resonantly enhanced when the dark photon mass matches the primordial plasma frequency, which depends sensitively on the underlying spatial distribution of electrons. Crucially, inhomogeneities in this distribution can have a significant impact on the nature of resonant conversions. We develop and describe, for the first time, a general analytic formalism to treat resonant oscillations in the presence of inhomogeneities. Our formalism follows from the theory of level crossings of random fields and only requires knowledge of the one-point probability density function (PDF) of the underlying electron number density fluctuations. We validate our formalism using simulations and illustrate the photon-to-dark photon conversion probability for several different choices of PDFs that are used to characterize the low-redshift Universe.
Address [Caputo, Andrea] Univ Valencia, Inst Fis Corpuscular, CSIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: andrea.caputo@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000591810800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4621
Permanent link to this record