toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fomichev, A.S.; Mukha, I.; Stepantsov, S.V.; Grigorenko, L.V.; Litvinova, E.V.; Chudoba, V.; Egorova, I.A.; Golovkov, M.S.; Gorshkov, A.V.; Gorshkov, V.A.; Kaminski, G.; Krupko, S.A.; Parfenova, Y.L.; Sidorchuk, S.I.; Slepnev, R.S.; Ter-Akopian, G.M.; Wolski, R.; Zhukov, M.V. url  doi
openurl 
  Title Lifetime of (26)S and a limit for its 2p decay energy Type Journal Article
  Year 2011 Publication International Journal of Modern Physics E Abbreviated Journal Int. J. Mod. Phys. E  
  Volume 20 Issue 6 Pages (down) 1491-1508  
  Keywords Properties of nuclei; nuclear energy  
  Abstract The unknown isotope (26)S, expected to decay by two-proton (2p) emission, was studied theoretically and searched experimentally. The structure of this nucleus was examined within the relativistic mean field (RMF) approach. A method for taking into account the many-body structure in the three-body decay calculations was developed. The results of the RMF calculations were used as an input for the three-cluster decay model optimized for the study of a possible 2p decay branch of this nucleus. The experimental search for (26)S was performed by fragmentation of a 50.3 A MeV (32)S beam. No events of a particles table (26)S or (25)P (a presumably proton-unstable subsystem of (26)S) were observed. Based on the obtained production systematics, an upper half-life limit of T(1/2) < 79 ns was established from the time-of-flight through the fragment separator. Together with the theoretical lifetime estimates for two-proton decay, this gives a decay energy limit of Q(2p) > 640 keV for (26)S. Analogous limits for (25)P are found as T(1/2) < 38 ns and Q(p) > 110 keV. In the case that the one-proton emission is the main branch of the (26)S decay, a limit Q(2p) > 230 keV would follow for this nucleus. According to these limits, it is likely that (26)S resides in the picosecond life time range  
  Address [Fomichev, AS; Stepantsov, SV; Grigorenko, LV; Chudoba, V; Golovkov, MS; Gorshkov, AV; Gorshkov, VA; Kaminski, G; Krupko, SA; Parfenova, YL; Sidorchuk, SI; Slepnev, RS; Ter-Akopian, GM; Wolski, R] JINR, Flerov Lab Nucl React, RU-141980 Dubna, Russia, Email: fomichev@jinr.ru  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-3013 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000292644900010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 693  
Permanent link to this record
 

 
Author Algora, A. et al; Jordan, D.; Tain, J.L.; Rubio, B.; Agramunt, J.; Perez-Cerdan, A.B.; Molina, F.; Caballero, L.; Nacher, E. doi  openurl
  Title Improvements on Decay Heat Summation Calculations by Means of Total Absorption Gamma-ray Spectroscopy Measurements Type Journal Article
  Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.  
  Volume 59 Issue 2 Pages (down) 1479-1482  
  Keywords Decay heat; Total absorption; Trap-assisted spectroscopy  
  Abstract The decay heat of fission products plays an important role in predictions of the heat released by nuclear fuel in reactors. In this contribution we present results of the analysis of the measurement of the beta decay of some refractory isotopes that were considered possible important contributors to the decay heat in reactors. The measurements presented here were performed at the IGISOL facility of the University of Jyvaskyla, Finland. In our measurements we have combined for the first time a Penning trap (JYFLTRAP), which was used as a high resolution isobaric separator, with a total absorption spectrometer. The results of the measurements as well as their consequences for decay heat summation calculations are discussed.  
  Address [Algora, A; Jordan, D; Tain, JL; Rubio, B; Agramunt, J; Caballero, L; Nacher, E; Perez-Cerdan, AB; Molina, F] Univ Valencia, CSIC, IFIC, Valencia, Spain, Email: algora@ific.uv.es  
  Corporate Author Thesis  
  Publisher Korean Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0374-4884 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294080700005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 729  
Permanent link to this record
 

 
Author Chang, Q.; Li, X.Q.; Yang, Y.D. url  doi
openurl 
  Title The effects of a family nonuniversal Z ' boson on B -> pi pi decays Type Journal Article
  Year 2011 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 26 Issue 7-8 Pages (down) 1273-1294  
  Keywords B-physics; rare decays; beyond Standard Model  
  Abstract Motivated by the measured large branching ratio of (B) over bar (0) --> pi(0)pi(0) (the so-called pi pi puzzle), we investigate the effects of a family nonuniversal Z' model on the tree-dominated B --> pi pi decays. We find that the Z' coupling parameter zeta(LR)(d) similar to 0.05 with a nontrivial new weak phase phi(L)(d) similar to -50 degrees, which is relevant to the Z' contributions to the QCD penguin sector Delta C-5, is needed to reconcile the observed discrepancy. Combined with the recent fitting results from B --> pi K, pi K* and rho K decays, the Z' parameter spaces are severely reduced but still not excluded entirely, implying that both the “pi pi” and “pi K” puzzles could be accommodated simultaneously within such a family nonuniversal Z' model.  
  Address [Chang, Qin; Li, Xin-Qiang] Henan Normal Univ, Dept Phys, Xinxiang 453007, Henan, Peoples R China, Email: changqin@htu.cn  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289175800004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 595  
Permanent link to this record
 

 
Author Miñano, M. doi  openurl
  Title Radiation Hard Silicon Strips Detectors for the SLHC Type Journal Article
  Year 2011 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 58 Issue 3 Pages (down) 1135-1140  
  Keywords High energy physics; microstrip; radiation detectors; silicon; SLHC  
  Abstract While the Large Hadron Collider (LHC) began taking data in 2009, scenarios for a machine upgrade to achieve a much higher luminosity are being developed. In the current planning, it is foreseen to increase the luminosity of the LHC at CERN around 2018. As radiation damage scales with integrated luminosity, the particle physics experiments will need to be equipped with a new generation of radiation hard detectors. This article reports on the status of the R&D projects on radiation hard silicon strips detectors for particle physics, linked to the Large Hadron Collider Upgrade, super-LHC (sLHC) of the ATLAS microstrip detector. The primary focus of this report is on measuring the radiation hardness of the silicon materials and the detectors under study. This involves designing silicon detectors, irradiating them to the sLHC radiation levels and studying their performance as particle detectors. The most promising silicon detector for the different radiation levels in the different regions of the ATLAS microstrip detector will be presented. Important challenges related to engineering layout, powering, cooling and reading out a very large strip detector are presented. Ideas on possible schemes for the layout and support mechanics will be shown.  
  Address IFIC UV CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: mercedes.minano@ific.uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291659300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 651  
Permanent link to this record
 

 
Author Linhart, V.; Burdette, D.; Chessi, E.; Cindro, V.; Clinthorne, N.H.; Cochran, E.; Grosicar, B.; Honscheid, K.; Kagan, H.; Lacasta, C.; Llosa, G.; Mikuz, M.; Stankova, V.; Studen, A.; Weilhammer, P.; Zontar, D. doi  openurl
  Title Spectroscopy study of imaging devices based on silicon Pixel Array Detector coupled to VATAGP7 read-out chips Type Journal Article
  Year 2011 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 6 Issue Pages (down) C01092 - 8pp  
  Keywords Gamma camera, SPECT, PET PET/CT, coronary CT angiography (CTA); Compton imaging  
  Abstract Spectroscopic and timing response studies have been conducted on a detector module consisting of a silicon Pixel Array Detector bonded on two VATAGP7 read-out chips manufactured by Gamma-Medica Ideas using laboratory gamma sources and the internal calibration facilities (the calibration system of the read-out chips). The performed tests have proven that the chips have (i) non-linear calibration curves which can be approximated by power functions, (ii) capability to measure the energy of photons with energy resolution better than 2 keV (exact range and resolution depend on experimental setup), (iii) the internal calibration facility which provides 6 out of 16 available internal calibration charges within our region of interest (spanning the Compton edge of 511 keV photons). The peaks induced by the internal calibration facility are suitable for a fit of the calibration curves. However, they are not suitable for measurements of equivalent noise charge because their full width at half maximum varies with their amplitude. These facts indicate that the VATAGP7 chips are useful and precise tools for a wide variety of spectroscopic devices. We have also explored time walk of the module and peaking time of the spectroscopy signals provided by the chips. We have observed that (iv) the time walk is caused partly by the peaking time of the signals provided by the fast shaper of the chips and partly by the timing uncertainty related to the varying position of the photon interaction, (v) the peaking time of the spectroscopy signals provided by the chips increases with increasing pulse height.  
  Address [Linhart, V.; Lacasta, C.; Llosa, G.; Stankova, V.] UVEG, CSIC, IFIC, Expt Phys Dept,Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Vladimir.Linhart@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291345600097 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 645  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva