toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Biswas, S. et al; Perez-Vidal, R.M. url  doi
openurl 
  Title Prompt-delayed gamma-ray spectroscopy of neutron-rich In-119, In-121 isotopes Type Journal Article
  Year 2020 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 102 Issue 1 Pages (down) 014326 - 10pp  
  Keywords  
  Abstract Background: The Z = 50 shell closure, near N = 82, is unique in the sense that it is the only shell closure with the spin-orbit partner orbitals, pi g(9/2) and pi g(7/2), enclosing the magic gap. The interaction of the proton hole/particle in the above-mentioned orbitals with neutrons in the nu h(11)(/2) orbital is an important prerequisite to the understanding of the nuclear structure near N = 82 and the nu pi interaction. Purpose: To explore the structural similarity between the high-spin isomeric states in In (Z = 49), Sn (Z = 50), and Sb (Z = 51) isotopes from a microscopic point of view. In addition, to understand the role of a proton hole or particle in the spin-orbit partner orbitals, pi g(9/2) and pi g(7/2), respectively, with neutron holes in the nu h(11)(/2) orbital on these aforementioned isomers. Methods: The fusion and transfer induced fission reaction Be-9(U-238, f) with 6.2 MeV/u beam energy, using a unique setup consisting of AGATA, VAMOS ++, and EXOGAM detectors, was used to populate through the fission process and study the neutron-rich In-119,In-121 isotopes. This setup enabled the prompt-delayed gamma-ray spectroscopy of isotopes in the time range of 100 ns-200 μs. Results: In the odd-A In-119,In-121 isotopes, indications of a short half-life 19/2(-) isomeric state, in addition to the previously known 25/2(+) isomeric state, were observed from the present data. Further, new prompt transitions above the 25/2(+) isomer in In-121 were identified along with reevaluation of its half-life. Conclusions: The experimental data were compared with the theoretical results obtained in the framework of large-scale shell-model calculations in a restricted model space. The <pi g(9/2)nu h(11/2); I vertical bar H vertical bar pi g(9/2) nu h(11/2);I > two-body matrix elements of residual interaction were modified to explain the excitation energies and the B(E2) transition probabilities in the neutron-rich In isotopes. The (i) decreasing trend of E(29/2(+))-E(25/2(+)) in odd-In (with dominant configuration pi g(9/)(2)(-1) nu h(11/2)(-2) and maximum aligned spin of 29/2+) and (ii) increasing trend of E(27/2(+)) – E(23/2(+)) in odd-Sb (with dominant configuration pi g(7/)(2)(+1) nu h(11/2)(-2) and maximum aligned spin of 27/2(+)) with increasing neutron number could be understood as a consequence of hole-hole and particle-hole interactions, respectively.  
  Address [Biswas, S.; Lemasson, A.; Rejmund, M.; Navin, A.; Kim, Y. H.; Michelagnoli, C.; Clement, E.; de France, G.; Fremont, G.; Goupil, J.; Jacquot, B.; Li, H. J.; Menager, L.; Morel, V; Ropert, J.] GANIL, CEA, DRF, CNRS,IN2P3, Bd Henri Becquerel,BP 55027, F-14076 Caen 05, France, Email: lemasson@ganil.fr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000556554700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4489  
Permanent link to this record
 

 
Author AGATA Collaboration (Rezynkina, K. et al); Gadea, A.; Perez-Vidal, R.M. url  doi
openurl 
  Title Structure of As-83, As- 85, and As-87: From semimagicity to gamma softness Type Journal Article
  Year 2022 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 106 Issue 1 Pages (down) 014320 - 14pp  
  Keywords  
  Abstract The structure of As-83,As- 85, and As-87 have been studied in fusion-fission reaction( 238)U+9Be. Fission fragments were identified in mass and atomic number using the VAMOS++ spectrometer and the coincident gamma rays were detected in the gamma-ray tracking array AGATA. New transitions in 83As and 85As are reported and placed in the level schemes. A level scheme of the excited states in 87As is proposed for the first time. The data are interpreted in frame of large-scale shell-model calculations, SU3 symmetries, and beyond mean-field frameworks. A spherical regime at magic number N = 50 is predicted and the location of the proton g9/2 orbital is proposed for the first time. Development of collectivity in a prolate deformed, gamma-soft regime in the open shell cases 85As and 87As, most neutron-rich isotopes beyond N = 50, is concluded. Data and theoretical calculations give confidence to a relatively high extrapolated excitation energy about 4 MeV of the 9/2+ state in 79Cu, one proton above 78Ni.  
  Address [Rezynkina, K.; Dao, D. D.; Duchene, G.; Nowacki, F.; Didierjean, F.; Le Blanc, F.; Lozeva, R.; Schmitt, C.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: kseniia.rezynkina@pd.infn.it  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000848175600004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5347  
Permanent link to this record
 

 
Author Dudouet, J. et al; Gadea, A.; Perez-Vidal, R.M. doi  openurl
  Title Excitations of the magic N=50 neutron-core revealed in Ga-81 Type Journal Article
  Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 100 Issue 1 Pages (down) 011301 - 6pp  
  Keywords  
  Abstract The high-spin states of the neutron-rich Ga-81, with three valence protons outside a Ni-78 core, were measured. The measurement involved prompt gamma-ray spectroscopy of fission fragments isotopically identified using the combination of the variable mode spectrometer (VAMOS++) and the advanced gamma tracking array (AGATA). The new gamma-ray transitions, observed in coincidence with Ga-81 ions, and the corresponding level scheme do not confirm the high-spin levels reported earlier. The newly observed high-spin states in Ga-81 are interpreted using the results of state-of-the-art large-scale shell model (LSSM) calculations. The lower excitation energy levels are understood as resulting from the recoupling of three valence protons to the closed doubly magic core, while the highest excitation energy levels correspond to excitations of the magic N = 50 neutron core. These results support the doubly magic character of Ni-78 and the persistence of the N = 50 shell closure but also highlight the presence of strong proton-neutron correlations associated with the promotion of neutrons across the magic N = 50 shell gap, only few nucleons away from Ni-78.  
  Address [Dudouet, J.; Maquart, G.; Stezowski, O.; Ducoin, C.; Guinet, D.; Redon, N.] Univ Lyon 1, CNRS IN2P3, IPN Lyon, F-69622 Villeurbanne, France, Email: jeremie.dudouet@csnsm.in2p3.fr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000475500200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4095  
Permanent link to this record
 

 
Author Lalovic, N.; Louchart, C.; Michelagnoli, C.; Perez-Vidal, R.M.; Ralet, D.; Gerl, J.; Rudolph, D.; Arici, T.; Bazzacco, D.; Clement, E.; Gadea, A.; Kojouharov, I.; Korichi, A.; Labiche, M.; Ljungvall, J.; Lopez-Martens, A.; Nyberg, J.; Pietralla, N.; Pietri, S.; Stezowski, O. doi  openurl
  Title Performance of the AGATA gamma-ray spectrometer in the PreSPEC set-up at GSI Type Journal Article
  Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 806 Issue Pages (down) 258-266  
  Keywords Gamma-ray spectroscopy; Gamma-ray tracking; Nuclear structure; Pulse shape analysis; HPGe detectors  
  Abstract In contemporary nuclear physics, the European Advanced GAmma Tracking Array (AGATA) represents a crucial detection system for cutting-edge nuclear structure studies. AGATA consists of highly segmented high-purity germanium crystals and uses the pulse-shape analysis technique to determine both the position and the energy of the y-ray interaction points in the crystals. It is the tracking algorithms that deploy this information and enable insight into the sequence of interactions, providing information on the full or partial absorption of the 7 ray. A series of dedicated performance measurements for an AGATA set-up comprising 21 crystals is described. This set-up was used within the recent PreSPEC-AGATA experimental campaign at the GSI Helmholtzzentrum fur Schwerionenforschung. Using the radioactive sources Co-56, Co-60 and Eu-152, absolute and normalized efficiencies and the peak-to-total of the array were measured. These quantities are discussed using different data analysis procedures. The quality of the pulse-shape analysis and the tracking algorithm are evaluated. The agreement between the experimental data and the Geant4 simulations is also investigated.  
  Address [Lalovic, N.; Rudolph, D.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden, Email: Natasa.Lalovic@nuclear.lu.se  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000364856100035 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2463  
Permanent link to this record
 

 
Author Mengoni, D.; Duenas, J.A.; Assie, M.; Boiano, C.; John, P.R.; Aliaga, R.J.; Beaumel, D.; Capra, S.; Gadea, A.; Gonzales, V.; Gottardo, A.; Grassi, L.; Herrero-Bosch, V.; Houdy, T.; Martel, I.; Parkar, V.V.; Perez-Vidal, R.M.; Pullia, A.; Sanchis, E.; Triossi, A.; Valiente-Dobon, J.J. doi  openurl
  Title Digital pulse-shape analysis with a TRACE early silicon prototype Type Journal Article
  Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 764 Issue Pages (down) 241-246  
  Keywords Silicon detector; Light-charged particles; Digital pulse shape analysis; Particle identification; Gamma-ray spectroscopy  
  Abstract A highly segmented silicon-pad detector prototype has been tested to explore the performance of the digital pulse shape analysis in the discrimination of the particles reaching the silicon detector. For the first time a 200 tun thin silicon detector, grown using an ordinary floating zone technique, has been shown to exhibit a level discrimination thanks to the fine segmentation. Light-charged particles down to few MeV have been separated, including their punch-through. A coaxial HPGe detector in time coincidence has further confirmed the quality of the particle discrimination.  
  Address [Mengoni, D.; John, P. R.; Grassi, L.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000341987000030 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1929  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva