toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Adolf, P.; Hirsch, M.; Päs, H. url  doi
openurl 
  Title Radiative neutrino masses and the Cohen-Kaplan-Nelson bound Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages (up) 078 - 14pp  
  Keywords Neutrino Mixing; Other Weak Scale BSM Models; Specific BSM Phenomenology  
  Abstract Recently, an increasing interest in UV/IR mixing phenomena has drawn attention to the range of validity of standard quantum field theory. Here we explore the consequences of such a limited range of validity in the context of radiative models for neutrino mass generation. We adopt an argument first published by Cohen, Kaplan and Nelson that gravity implies both UV and IR cutoffs, apply it to the loop integrals describing radiative corrections, and demonstrate that this effect has significant consequences for the parameter space of radiative neutrino mass models.  
  Address [Adolf, Patrick; Paes, Heinrich] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany, Email: patrick.adolf@tu-dortmund.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001120244000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5851  
Permanent link to this record
 

 
Author Cepedello, R.; Hirsch, M.; Helo, J.C. url  doi
openurl 
  Title Loop neutrino masses from d=7 operator Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages (up) 079 - 21pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We discuss the generation of small neutrino masses from d = 71 -loop diagrams. We first systematically analyze all possible d = 7 1 -loop topologies. There is a total of 48 topologies, but only 8 of these can lead to “genuine” d = 7 neutrino masses. Here, we define genuine models to be models in which neither d = 5 nor d = 7 tree -level masses nor a d = 5 1 -loop mass appear, such that the d = 7 1 -loop is the leading order contribution to the neutrino masses. All genuine models can then be organized w.r.t. their particle content. We find there is only one diagram with no representation larger than triplet, while there are 22 diagrams with quadruplets. We briefly discuss three minimal example models of this kind.  
  Address [Cepedello, R.; Hirsch, M.] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: ricepe@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000405916600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3223  
Permanent link to this record
 

 
Author Cepedello, R.; Esser, F.; Hirsch, M.; Sanz, V. url  doi
openurl 
  Title SMEFT goes dark: Dark Matter models for four-fermion operators Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages (up) 081 - 47pp  
  Keywords SMEFT; Dark Matter at Colliders; Specific BSM Phenomenology  
  Abstract We study ultra-violet completions for d = 6 four-fermion operators in the standard model effective field theory (SMEFT), focusing on models that contain cold dark matter candidates. Via a diagrammatic method, we generate systematically lists of possible UV completions, with the aim of providing sets of models, which are complete under certain, well specified assumptions. Within these lists of models we rediscover many known DM models, as diverse as R-parity conserving supersymmetry or the scotogenic neutrino mass model. Our lists, however, also contain many new constructions, which have not been studied in the literature so far. We also briefly discuss how our DM models could be constrained by reinterpretations of LHC searches and the prospects for HL-LHC and future lepton colliders.  
  Address [Cepedello, Ricardo] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: ricardo.cepedello@physik.uni-wuerzburg.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001067194100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5688  
Permanent link to this record
 

 
Author Hirsch, M.; Malinsky, M.; Porod, W.; Reichert, L.; Staub, F. url  doi
openurl 
  Title Hefty MSSM-like light Higgs in extended gauge models Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages (up) 084  
  Keywords  
  Abstract It is well known that in the MSSM the lightest neutral Higgs h(0) must be, at the tree level, lighter than the Z boson and that the loop corrections shift this stringent upper bound up to about 130GeV. Extending the MSSM gauge group in a suitable way, the new Higgs sector dynamics can push the tree-level mass of h(0) well above the tree-level MSSM limit if it couples to the new gauge sector. This effect is further pronounced at the loop level and h(0) masses in the 140GeV ballpark can be reached easily. We exemplify this for a sample setting with a low-scale U(1)(R) x U(1)(B-L) gauge symmetry in which neutrino masses can be implemented via the inverse seesaw mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301453400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1027  
Permanent link to this record
 

 
Author Hirsch, M.; Reichert, L.; Porod, W. url  doi
openurl 
  Title Supersymmetric mass spectra and the seesaw scale Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages (up) 086 - 32pp  
  Keywords Supersymmetry Phenomenology  
  Abstract Supersymmetric mass spectra within two variants of the seesaw mechanism, commonly known as type-II and type-III seesaw, are calculated using full 2-loop RGEs and minimal Supergravity boundary conditions. The type-II seesaw is realized using one pair of 15 and (15) over bar superfields, while the type-III is realized using three copies of 24(M) superfields. Using published, estimated errors on SUSY mass observables attainable at the LHC and in a combined LHC+ILC analysis, we calculate expected errors for the parameters of the models, most notably the seesaw scale. If SUSY particles are within the reach of the ILC, pure mSugra can be distinguished from mSugra plus type-II or type-III seesaw for nearly all relevant values of the seesaw scale. Even in the case when only the much less accurate LHC measurements are used, we find that indications for the seesaw can be found in favourable parts of the parameter space. Since our conclusions crucially depend on the reliability of the theoretically forecasted error bars, we discuss in some detail the accuracies which need to be achieved for the most important LHC and ILC observables before an analysis, such as the one presented here, can find any hints for type-II or type-III seesaw in SUSY spectra.  
  Address [Hirsch, M; Reichert, L] Univ Valencia, CSIC, AHEP Grp, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000291364500018 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 685  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva