Ikeno, N., Bayar, M., & Oset, E. (2021). Combined theoretical study of the D+ -> pi(+) eta eta and D+ -> pi(+)pi(0) eta reactions. Eur. Phys. J. C, 81(4), 377–10pp.
Abstract: We study the D+ -> pi(+) eta eta and D+ -> pi(+)pi(0) eta reactions, which are single Cabibbo suppressed and can proceed both through internal and external emission. The primary mechanisms at quark level are considered, followed by hadronization to produce three mesons in the D+ decay, and after that the final state interaction of these mesons leads to the production of the a(0)(980) resonance, seen in the pi(+)eta, pi(0)eta mass distributions. The theory has three unknown parameters to determine the shape of the distributions and the ratio between the D+ -> pi(+) eta eta and D+ -> pi(+)pi(0) eta rates. This ratio restricts much the sets of parameters but there is still much freedom leading to different shapes in the mass distributions. We call for a measurement of these mass distributions that will settle the reaction mechanism, while at the same time provide relevant information on the way that the a(0)(980) resonance is produced in the reactions.
|
Oset, E., Bayar, M., Dote, A., Hyodo, T., Khemchandani, K. P., Liang, W. H., et al. (2016). Two-, Three-, Many-body Systems Involving Mesons. Multimeson Condensates. Acta Phys. Pol. B, 47(2), 357–365.
Abstract: In this paper, we review results from studies with unconventional many-hadron systems containing mesons: systems with two mesons and one baryon, three mesons, some novel systems with two baryons and one meson, and finally, systems with many vector mesons, up to six, with their spins aligned forming states of increasing spin. We show that in many cases, one has experimental counterparts for the states found, while in some other cases, they remain as predictions, which we suggest to be searched in BESIII, Belle, LHCb, FAIR and other facilities.
|
Bayar, M., & Oset, E. (2013). The (K)over-barNN system revisited including absorption. Nucl. Phys. A, 914, 349–353.
Abstract: We present the Fixed Center Approximation (FCA) to the Faddeev equations for the (K) over bar NN system with S = 0, including the charge exchange mechanisms in the (K) over bar rescattering. The system appears bound by about 35 MeV and the width, omitting two body absorption, is about 50 MeV. We also evaluate the (K) over bar absorption width in the bound (K) over bar NN system by employing the FCA to account for (K) over bar rescattering on the NN cluster. The width of the states found previously for S = 0 and S = 1 is found now to increase by about 30 MeV due to the (K) over bar NN absorption, to a total value of about 80 MeV.
|
Bayar, M., Song, J., Dai, L. R., & Oset, E. (2025). Photoproduction of the Λ(1800). Eur. Phys. J. C, 85(3), 239–9pp.
Abstract: We have carried out a study of the gamma p -> pK+K*-(K*--> K-pi 0), gamma p -> pK+K*-(K*--> K0 pi-) and gamma p -> K+K-p reactions, producing the K+Lambda(1800) final state, from the perspective that the Lambda(1800) resonance is dynamically generated from the interaction of K*N with its coupled vector-baryon channels, in complete analogy to the Lambda(1405) generated from the interaction of KN and its coupled pseudoscalar-baryon channels. The two reactions are complementary and their mass distributions are tied to the particular nature of this resonance in that framework. We provide much information on the shapes and strength of the invariant mass distributions of these reactions, and the energy dependence of the cross sections, that when contrasted with future experiments should shed valuable light on the nature of this resonance and its analogy to the Lambda(1405).
|
Bayar, M., Ikeno, N., & Oset, E. (2020). Analysis of the psi (4040) and psi (4160) decay into D-(*()) (D)over-bar(()*()), D-s(()*()) (D)over-bar(s)(()*()). Eur. Phys. J. C, 80(3), 222–9pp.
Abstract: We have performed an analysis of the e+e--> D(*) data in the region of the psi(4040) and psi(4160) resonances which have a substantial overlap and require special care. By using the P-3(0) model to relate the different D(*)(D) over bar(*) production modes, we make predictions for production of these channels and compare with experiment and other theoretical approaches. As a side effect we find that these resonances qualify largely as c (c) over bar states and theweight of the meson-meson components in the wave function is very small.
|