|   | 
Details
   web
Records
Author Di Valentino, E.; Melchiorri, A.; Mena, O.
Title Dark radiation sterile neutrino candidates after Planck data Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages (down) 018 - 13pp
Keywords cosmological neutrinos; neutrino properties; neutrino theory; dark energy theory
Abstract Recent Cosmic Microwave Background (CMB) results from the Planck satellite, combined with previous CMB data and Hubble constant measurements from the Hubble Space Telescope, provide a constraint on the effective number of relativistic degrees of freedom 3.62(-0.48)(+0.50) at 95% CL. New Planck data provide a unique opportunity to place limits on models containing relativistic species at the decoupling epoch. We present here the bounds on sterile neutrino models combining Planck data with galaxy clustering information. Assuming N-eff active plus sterile massive neutrino species, in the case of a Planck+WP+HighL+HST analysis we find m(nu,sterile)(eff) < 0.36 eV and 3.14 < N-eff < 4.15 at 95% CL, while using Planck+WP+HighL data in combination with the full shape of the galaxy power spectrum from the Baryon Oscillation Spectroscopic Survey BOSS Data Relase 9 measurements, we find that 3.30 < N-eff < 4.43 and m(nu,sterile)(eff) < 0.33 eV both at 95% CL with the three active neutrinos having the minimum mass allowed in the normal hierarchy scheme, i.e. Sigma m(nu) similar to 0.06 eV. These values compromise the viability of the (3 + 2) massive sterile neutrino models for the parameter region indicated by global fits of neutrino oscillation data. Within the (3 + 1) massive sterile neutrino scenario, we find m(nu,sterile)(eff) < 0.34 eV at 95% CL. While the existence of one extra sterile massive neutrino state is compatible with current oscillation data, the values for the sterile neutrino mass preferred by oscillation analyses are significantly higher than the current cosmological bound. We review as well the bounds on extended dark sectors with additional light species based on the latest Planck CMB observations.
Address [Di Valentino, Eleonora; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy, Email: eleonora.divalentino@roma1.infn.it;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000327843900019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1672
Permanent link to this record
 

 
Author Mertsch, P.; Parimbelli, G.; de Salas, P.F.; Gariazzo, S.; Lesgourgues, J.; Pastor, S.
Title Neutrino clustering in the Milky Way and beyond Type Journal Article
Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 01 Issue 1 Pages (down) 015 - 23pp
Keywords cosmological neutrinos; galaxy clustering; cosmological simulations
Abstract The standard cosmological model predicts the existence of a Cosmic Neutrino Background, which has not yet been observed directly. Some experiments aiming at its detection are currently under development, despite the tiny kinetic energy of the cosmological relic neutrinos, which makes this task incredibly challenging. Since massive neutrinos are attracted by the gravitational potential of our Galaxy, they can cluster locally. Neutrinos should be more abundant at the Earth position than at an average point in the Universe. This fact may enhance the expected event rate in any future experiment. Past calculations of the local neutrino clustering factor only considered a spherical distribution of matter in the Milky Way and neglected the influence of other nearby objects like the Virgo cluster, although recent N-body simulations suggest that the latter may actually be important. In this paper, we adopt a back-tracking technique, well established in the calculation of cosmic rays fluxes, to perform the first three-dimensional calculation of the number density of relic neutrinos at the Solar System, taking into account not only the matter composition of the Milky Way, but also the contribution of the Andromeda galaxy and the Virgo cluster. The effect of Virgo is indeed found to be relevant and to depend non-trivially on the value of the neutrino mass. Our results show that the local neutrino density is enhanced by 0.53% for a neutrino mass of 10 meV, 12% for 50 meV, 50% for 100 meV or 500% for 300 meV.
Address [Mertsch, P.; Lesgourgues, J.] Rhein Westfal TH Aachen, Inst Theoret Particle Phys & Cosmol TTK, D-52056 Aachen, Germany, Email: pmertsch@physik.rwth-aachen.de;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000528025800016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4382
Permanent link to this record
 

 
Author Farzan, Y.; Palomares-Ruiz, S.
Title Dips in the diffuse supernova neutrino background Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages (down) 014 - 21pp
Keywords dark matter theory; supernova neutrinos; cosmological neutrinos
Abstract Scalar (fermion) dark matter with mass in the MeV range coupled to ordinary neutrinos and another fermion (scalar) is motivated by scenarios that establish a link between radiatively generated neutrino masses and the dark matter relic density. With such a coupling, cosmic supernova neutrinos, on their way to us, could resonantly interact with the background (lark matter particles, giving rise to a dip in their redshift-integrated spectra. Current and future neutrino detectors, such as Super-Kamiokande. LENA and HyperKamiokande, could be able to detect this distortion.
Address [Farzan, Yasaman] Inst Res Fundamental Sci IPM, Sch Phys, Tehran, Iran, Email: yasaman@theory.ipm.ac.ir;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000346407200014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2046
Permanent link to this record
 

 
Author Gariazzo, S.; de Salas, P.F.; Pastor, S.
Title Thermalisation of sterile neutrinos in the early universe in the 3+1 scheme with full mixing matrix Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages (down) 014 - 30pp
Keywords cosmological neutrinos; neutrino properties; particle physics – cosmology connection; physics of the early universe
Abstract In the framework of a 3+1 scheme with an additional inert state, we consider the thermalisation of sterile neutrinos in the early Universe taking into account the full 4 x 4 mixing matrix. The evolution of the neutrino energy distributions is found solving the momentum-dependent kinetic equations with full diagonal collision terms, as in previous analyses of flavour neutrino decoupling in the standard case. The degree of thermalisation of the sterile state is shown in terms of the effective number of neutrinos, N-eff, and its dependence on the three additional mixing angles (theta(14), theta(24), theta(34)) and on the squared mass difference Delta m(41)(2) is discussed. Our results are relevant for fixing the contribution of a fourth light neutrino species to the cosmological energy density, whose value is very well constrained by the final Planck analysis. For the preferred region of active-sterile mixing parameters from short-baseline neutrino experiments, we find that the fourth state is fully thermalised (N-eff similar or equal to 4).
Address [Gariazzo, S.; Pastor, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: gariazzo@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000474782100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4076
Permanent link to this record
 

 
Author Vincent, A.C.; Fernandez Martinez, E.; Hernandez, P.; Mena, O.; Lattanzi, M.
Title Revisiting cosmological bounds on sterile neutrinos Type Journal Article
Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages (down) 006 - 23pp
Keywords particle physics – cosmology connection; cosmological neutrinos; cosmology of theories beyond the SM
Abstract We employ state-of-the art cosmological observables including supernova surveys and BAO information to provide constraints on the mass and mixing angle of a non-resonantly produced sterile neutrino species, showing that cosmology can effectively rule out sterile neutrinos which decay between BBN and the present day. The decoupling of an additional heavy neutrino species can modify the time dependence of the Universe's expansion between BBN and recombination and, in extreme cases, lead to an additional matter-dominated period; while this could naively lead to a younger Universe with a larger Hubble parameter, it could later be compensated by the extra radiation expected in the form of neutrinos from sterile decay. However, recombination-era observables including the Cosmic Microwave Background (CMB), the shift parameter R-CMB and the sound horizon r(s) from Baryon Acoustic Oscillations (BAO) severely constrain this scenario. We self-consistently include the full time-evolution of the coupled sterile neutrino and standard model sectors in an MCMC, showing that if decay occurs after BBN, the sterile neutrino is essentially bounded by the constraint sin(2) theta less than or similar to 0.026(m(s)/eV)(-2).
Address [Vincent, Aaron C.] Univ Durham, Dept Phys, IPPP, Durham DH1 3LE, England, Email: aaron.vincent@durham.ac.uk;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000355742500007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2261
Permanent link to this record
 

 
Author Moline, A.; Ibarra, A.; Palomares-Ruiz, S.
Title Future sensitivity of neutrino telescopes to dark matter annihilations from the cosmic diffuse neutrino signal Type Journal Article
Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages (down) 005 - 34pp
Keywords dark matter theory; dark matter simulations; cosmological neutrinos
Abstract Cosmological observations and cold dark matter N-body simulations indicate that our Universe is populated by numerous halos, where dark matter particles annihilate, potentially producing Standard Model particles. In this paper we calculate the contribution to the diffuse neutrino background from dark matter annihilations in halos at all redshifts and we estimate the future sensitivity to the annihilation cross section of neutrino telescopes such as IceCube or ANTARES. We consider various parametrizations to describe the internal halo properties and for the halo mass function in order to bracket the theoretical uncertainty in the limits from the modeling of the cosmological annihilation flux. We find that observations of the cosmic diffuse neutrino flux at large angular distances from the galactic center lead to constraints on the dark matter annihilation cross section which are complementary to ( and for some extrapolations of the astrophysical parameters, better than) those stemming from observations of the Milky Way halo, especially for neutrino telescopes not pointing directly to the Milky Way center, as is the case of IceCube.
Address [Moline, Angeles] Univ Tecn Lisboa, Inst Super Tecn, CFTP, P-1049001 Lisbon, Portugal, Email: maria.moline@ist.utl.pt;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000359215400006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2369
Permanent link to this record