|   | 
Details
   web
Records
Author NEXT Collaboration (Renner, J. et al); Alvarez, V.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title Ionization and scintillation of nuclear recoils in gaseous xenon Type Journal Article
Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 793 Issue Pages (down) 62-74
Keywords Dark matter; High pressure xenon gas; WIMP; Neutrino less double beta decay; Nuclear recoils
Abstract Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope a-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.
Address [Renner, J.; Gehman, V. M.; Goldschmidt, A.; Matis, H. S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C. A. B.; Shuman, D.] LBNL, Berkeley, CA 94720 USA, Email: jrenner@lbl.gov
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000355774500011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2247
Permanent link to this record
 

 
Author NEXT Collaboration (Ferrario, P. et al); Benlloch-Rodriguez, J.M.; Kekic, M.; Renner, J.; Uson, A.; Alvarez, V.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Herrero, P.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Sorel, M.; Yahlali, N.
Title Demonstration of the event identification capabilities of the NEXT-White detector Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages (down) 052 - 20pp
Keywords Dark Matter and Double Beta Decay (experiments)
Abstract In experiments searching for neutrinoless double-beta decay, the possibility of identifying the two emitted electrons is a powerful tool in rejecting background events and therefore improving the overall sensitivity of the experiment. In this paper we present the first measurement of the efficiency of a cut based on the different event signatures of double and single electron tracks, using the data of the NEXT-White detector, the first detector of the NEXT experiment operating underground. Using a Th-228 calibration source to produce signal-like and background-like events with energies near 1.6 MeV, a signal efficiency of 71.6 +/- 1.5(stat) +/- 0.3(sys) % for a background acceptance of 20.6 +/- 0.4(stat) +/- 0.3(sys)% is found, in good agreement with Monte Carlo simulations. An extrapolation to the energy region of the neutrinoless double beta decay by means of Monte Carlo simulations is also carried out, and the results obtained show an improvement in background rejection over those obtained at lower energies.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: paola.ferrario@dipc.org
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000509259700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4260
Permanent link to this record
 

 
Author NEXT Collaboration (Novella, P. et al); Palmeiro, B.; Sorel, M.; Uson, A.; Alvarez, V; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Herrero, P.; Kekic, M.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Querol, M.; Renner, J.; Romo-Luque, C.; Yahlali, N.
Title Radiogenic backgrounds in the NEXT double beta decay experiment Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages (down) 051 - 26pp
Keywords Dark Matter and Double Beta Decay (experiments)
Abstract Natural radioactivity represents one of the main backgrounds in the search for neutrinoless double beta decay. Within the NEXT physics program, the radioactivity- induced backgrounds are measured with the NEXT-White detector. Data from 37.9 days of low-background operations at the Laboratorio Subterraneo de Canfranc with xenon depleted in Xe-136 are analyzed to derive a total background rate of (0.84 +/- 0.02) mHz above 1000 keV. The comparison of data samples with and without the use of the radon abatement system demonstrates that the contribution of airborne-Rn is negligible. A radiogenic background model is built upon the extensive radiopurity screening campaign conducted by the NEXT collaboration. A spectral fit to this model yields the specific contributions of Co-60, K-40, Bi-214 and Tl-208 to the total background rate, as well as their location in the detector volumes. The results are used to evaluate the impact of the radiogenic backgrounds in the double beta decay analyses, after the application of topological cuts that reduce the total rate to (0.25 +/- 0.01) mHz. Based on the best-fit background model, the NEXT-White median sensitivity to the two-neutrino double beta decay is found to be 3.5 sigma after 1 year of data taking. The background measurement in a Q(beta beta)+/- 100 keV energy window validates the best-fit background model also for the neutrinoless double beta decay search with NEXT-100. Only one event is found, while the model expectation is (0.75 +/- 0.12) events.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: pau.novella@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000491469000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4183
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Martin-Albo, J.; Muñoz Vidal, J.; Pena-Garay, C.
Title Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages (down) 043 - 17pp
Keywords neutrino masses from cosmology; double beta decay
Abstract The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, with Sigma m(nu) = (0.32 +/- 0.11) eV. This result, if con firmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass m(beta beta) involved in neutrinoless double beta decay (beta beta 0 nu) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based beta beta 0 nu experiments, on the double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg.year, could already have a sizeable opportunity to observe beta beta 0 nu events, and their combined discovery potential is quite large. The next generation, with an exposure in the range of 10 ton.year, would have a much more enhanced sensitivity, in particular due to the very low specific background that all the xenon technologies (liquid xenon, high-pressure xenon and xenon dissolved in liquid scintillator) can achieve. In addition, a high-pressure xenon gas TPC also features superb energy resolution. We show that such detector can fully explore the range of allowed effective Majorana masses, thus making a discovery very likely.
Address CSIC, Inst Fis Corpuscular, IFIC, Valencia 46090, Spain, Email: gomez@mail.cern.ch;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000316989200044 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1434
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Guinea, F.; Fogler, M.M.; Katsnelson, M.I.; Martin-Albo, J.; Monrabal, F.; Muñoz Vidal, J.
Title GraXe, graphene and xenon for neutrinoless double beta decay searches Type Journal Article
Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages (down) 037 - 17pp
Keywords neutrino experiments; double beta decay
Abstract We propose a new detector concept, GraXe (to be pronounced as grace), to search for neutrinoless double beta decay in Xe-136. GraXe combines a popular detection medium in rare-event searches, liquid xenon, with a new, background-free material, grapheme. In our baseline design of GraXe, a sphere made of graphene-coated titanium mesh and filled with liquid xenon (LXe) enriched in the Xe-136 isotope is immersed in a large volume of natural LXe instrumented with photodetectors. Liquid xenon is an excellent scintillator, reasonably transparent to its own light. Graphene is transparent over a large frequency range, and impermeable to the xenon. Event position could be deduced from the light pattern detected in the photosensors. External backgrounds would be shielded by the buffer of natural LXe, leaving the ultra-radiopure internal volume virtually free of background. Industrial graphene can be manufactured at a competitive cost to produce the sphere. Enriching xenon in the isotope Xe-136 is easy and relatively cheap, and there is already near one ton of enriched xenon available in the world (currently being used by the EXO, KamLAND-Zen and NEXT experiments). All the cryogenic know-how is readily available from the numerous experiments using liquid xenon. An experiment using the GraXe concept appears realistic and affordable in a short time scale, and its physics potential is enormous.
Address [Gomez-Cadenas, J. J.; Martin-Albo, J.; Monrabal, F.; Munoz Vidal, J.] CSIC, Inst Fis Corpuscular, IFIC, Valencia 46980, Spain, Email: gomez@mail.cern.ch;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000301176000038 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 987
Permanent link to this record
 

 
Author NEXT Collaboration (Fernandes, A.F.M. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Herrero, P.; Kekic, M.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title Low-diffusion Xe-He gas mixtures for rare-event detection: electroluminescence yield Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages (down) 034 - 18pp
Keywords Particle correlations and fluctuations; Photon production; Dark Matter and Double Beta Decay (experiments); Rare decay
Abstract High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffu- sion significantly, improving the discrimination efficiency of these optical TPCs. We have measured the electroluminescence (EL) yield of Xe-He mixtures, in the range of 0 to 30% He and demonstrated the small impact on the EL yield of the addition of helium to pure xenon. For a typical reduced electric field of 2.5 kV/cm/bar in the EL region, the EL yield is lowered by similar to 2%, 3%, 6% and 10% for 10%, 15%, 20% and 30% of helium concentration, respectively. This decrease is less than what has been obtained from the most recent simulation framework in the literature. The impact of the addition of helium on EL statistical fluctuations is negligible, within the experimental uncertainties. The present results are an important benchmark for the simulation tools to be applied to future optical TPCs based on Xe-He mixtures.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: cristinam@uc.pt
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000525257400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4366
Permanent link to this record
 

 
Author NEXT Collaboration (Henriques, C.A.O. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Kekic, M.; Laing, A.; Lopez-March, N.; Martinez, A.; Martinez-Lema, G.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Rodriguez, J.; Romo-Luque, C.; Simon, A.; Sorel, M.; Yahlali, N.
Title Electroluminescence TPCs at the thermal diffusion limit Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages (down) 027 - 23pp
Keywords Dark Matter and Double Beta Decay (experiments); Photon production; Particle correlations and fluctuations; Rare decay
Abstract The NEXT experiment aims at searching for the hypothetical neutrinoless double-beta decay from the Xe-136 isotope using a high-purity xenon TPC. Efficient discrimination of the events through pattern recognition of the topology of primary ionisation tracks is a major requirement for the experiment. However, it is limited by the diffusion of electrons. It is known that the addition of a small fraction of a molecular gas to xenon reduces electron diffusion. On the other hand, the electroluminescence (EL) yield drops and the achievable energy resolution may be compromised. We have studied the effect of adding several molecular gases to xenon (CO2, CH4 and CF4) on the EL yield and energy resolution obtained in a small prototype of driftless gas proportional scintillation counter. We have compared our results on the scintillation characteristics (EL yield and energy resolution) with a microscopic simulation, obtaining the diffusion coefficients in those conditions as well. Accordingly, electron diffusion may be reduced from about 10 for pure xenon down to 2.5 using additive concentrations of about 0.05%, 0.2% and 0.02% for CO2, CH4 and CF4, respectively. Our results show that CF4 admixtures present the highest EL yield in those conditions, but very poor energy resolution as a result of huge fluctuations observed in the EL formation. CH4 presents the best energy resolution despite the EL yield being the lowest. The results obtained with xenon admixtures are extrapolated to the operational conditions of the NEXT-100 TPC. CO2 and CH4 show potential as molecular additives in a large xenon TPC. While CO2 has some operational constraints, making it difficult to be used in a large TPC, CH4 shows the best performance and stability as molecular additive to be used in the NEXT-100 TPC, with an extrapolated energy resolution of 0.4% at 2.45 MeV for concentrations below 0.4%, which is only slightly worse than the one obtained for pure xenon. We demonstrate the possibility to have an electroluminescence TPC operating very close to the thermal diffusion limit without jeopardizing the TPC performance, if CO2 or CH4 are chosen as additives.
Address [Henriques, C. A. O.; Monteiro, C. M. B.; Freitas, E. D. C.; Mano, R. D. P.; Jorge, M. R.; Fernandes, A. F. M.; Fernandes, L. M. P.; dos Santos, J. M. F.] Univ Coimbra, Phys Dept, LIBPhys, Rua Larga, P-3004516 Coimbra, Portugal, Email: pancho@gian.fis.uc.pt
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000455157300002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3873
Permanent link to this record
 

 
Author NEMO-3 Collaboration (Argyriades, J. et al); Diaz, J.; Martin-Albo, J.; Monrabal, F.; Novella, P.; Serra, L.; Yahlali, N.
Title Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 625 Issue 1 Pages (down) 20-28
Keywords Scintillation; Photomultiplier; Plastic scintillators; Optical photon transport; GEANT 4; Double beta decay
Abstract We have constructed a GEANT4-based detailed software model of photon transport in plastic sontillator blocks and have used it to study the NEMO-3 and SuperNEMO calorimeters employed in experiments designed to search for neutnnoless double beta decay We compare our simulations to measurements using conversion electrons from a calibration source of (BI)-B-207 and show that the agreement is improved if wavelength-dependent properties of the calorimeter are taken into account In this article we briefly describe our modeling approach and results of our studies.
Address [Lang, K.; Pahlka, R. B.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000285432400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 587
Permanent link to this record
 

 
Author Gariazzo, S.; Archidiacono, M.; de Salas, P.F.; Mena, O.; Ternes, C.A.; Tortola, M.
Title Neutrino masses and their ordering: global data, priors and models Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages (down) 011 - 22pp
Keywords neutrino masses from cosmology; neutrino properties; cosmological parameters from CMBR; double beta decay
Abstract We present a full Bayesian analysis of the combination of current neutrino oscillation, neutrinoless double beta decay and Cosmic Microwave Background observations. Our major goal is to carefully investigate the possibility to single out one neutrino mass ordering, namely Normal Ordering or Inverted Ordering, with current data. Two possible parametrizations (three neutrino masses versus the lightest neutrino mass plus the two oscillation mass splittings) and priors (linear versus logarithmic) are exhaustively examined. We find that the preference for NO is only driven by neutrino oscillation data. Moreover, the values of the Bayes factor indicate that the evidence for NO is strong only when the scan is performed over the three neutrino masses with logarithmic priors; for every other combination of parameterization and prior, the preference for NO is only weak. As a by-product of our Bayesian analyses, we are able to (a) compare the Bayesian bounds on the neutrino mixing parameters to those obtained by means of frequentist approaches, finding a very good agreement; (b) determine that the lightest neutrino mass plus the two mass splittings parametrization, motivated by the physical observables, is strongly preferred over the three neutrino mass eigenstates scan and (c) find that logarithmic priors guarantee a weakly-to-moderately more efficient sampling of the parameter space. These results establish the optimal strategy to successfully explore the neutrino parameter space, based on the use of the oscillation mass splittings and a logarithmic prior on the lightest neutrino mass, when combining neutrino oscillation data with cosmology and neutrinoless double beta decay. We also show that the limits on the total neutrino mass Sigma m(nu) can change dramatically when moving from one prior to the other. These results have profound implications for future studies on the neutrino mass ordering, as they crucially state the need for self-consistent analyses which explore the best parametrization and priors, without combining results that involve different assumptions.
Address [Gariazzo, S.; de Salas, P. F.; Mena, O.; Ternes, C. A.; Tortola, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: gariazzo@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000445497200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3736
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Martin-Albo, J.; Sorel, M.; Ferrario, P.; Monrabal, F.; Muñoz, J.; Novella, P.; Poves, A.
Title Sense and sensitivity of double beta decay experiments Type Journal Article
Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages (down) 007 - 30pp
Keywords double beta decay; neutrino experiments; neutrino properties
Abstract The search for neutrinoless double beta decay is a very active field in which the number of proposals for next-generation experiments has proliferated. In this paper we attempt to address both the sense and the sensitivity of such proposals. Sensitivity comes first, by means of proposing a simple and unambiguous statistical recipe to derive the sensitivity to a putative Majorana neutrino mass, m(beta beta). In order to make sense of how the different experimental approaches compare, we apply this recipe to a selection of proposals, comparing the resulting sensitivities. We also propose a “physics-motivated range” (PMR) of the nuclear matrix elements as a unifying criterium between the different nuclear models. The expected performance of the proposals is parametrized in terms of only four numbers: energy resolution, background rate (per unit time, isotope mass and energy), detection efficiency, and beta beta isotope mass. For each proposal, both a reference and an optimistic scenario for the experimental performance are studied. In the reference scenario we find that all the proposals will be able to partially explore the degenerate spectrum, without fully covering it, although four of them (KamLAND-Zen, CUORE, NEXT and EXO) will approach the 50 meV boundary. In the optimistic scenario, we find that CUORE and the xenon-based proposals (KamLAND-Zen, EXO and NEXT) will explore a significant fraction of the inverse hierarchy, with NEXT covering it almost fully. For the long term future, we argue that Xe-136-based experiments may provide the best case for a 1-ton scale experiment, given the potentially very low backgrounds achievable and the expected scalability to large isotope masses.
Address [Gomez-Cadenas, J. J.; Martin-Albo, J.; Sorel, M.; Ferrario, P.; Monrabal, F.; Munoz, J.] CSIC, IFIC, Valencia 46071, Spain, Email: gomez@mail.cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000292332400007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 675
Permanent link to this record